SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Deák Zsuzsanna) "

Sökning: WFRF:(Deák Zsuzsanna)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Deák, Zsuzsanna, et al. (författare)
  • Methanol modification of the electron paramagnetic resonance signals from the S0 and S2 states of the water-oxidizing complex of Photosystem II
  • 1999
  • Ingår i: Biochimica et Biophysica Acta - Bioenergetics. - 0005-2728. ; 1412:3, s. 240-249
  • Tidskriftsartikel (refereegranskat)abstract
    • The Mn-derived electron paramagnetic resonance (EPR) multiline signal from the S0 state of the water-oxidizing complex is observable only in the presence methanol. In the present study, we have characterized the effect of methanol on the EPR signals from the S0 and S2 states as well as on the EPR Signal IIslow originating from the TyrosineDox radical. The amplitudes of the S0 and S2 multiline signals increase with the methanol concentration in a similar way, whereas the S2 g=4.1 excited state signal amplitude shows a concomitant decrease. The methanol concentration at which half of the spectral change has occurred is ~0.2% and the effect is saturating around 5%. Methanol has an effect on the microwave power saturation of the S2 multiline signal, as well. The microwave power at half saturation (P1/2) is 85 mW in the presence of methanol, whereas the signal relaxes much slower (P1/2~27 mW) without. The relaxation of Signal IIslow in the presence of methanol has also been investigated. The P1/2 value of Signal IIslow oscillates with the S cycle in a similar way as without methanol, but the P1/2 values are consistently lower in the methanol-containing samples. From the results, we conclude that methanol modifies the magnetic properties of the S0 and S2 states in a similar way. The possible site and nature of methanol binding is discussed.
  •  
3.
  • Feyziyev, Yashar, et al. (författare)
  • Electron transfer from Cyt b (559) and tyrosine-D to the S-2 and S-3 states of the water oxidizing complex in photosystem II at cryogenic temperatures
  • 2013
  • Ingår i: Journal of Bioenergetics and Biomembranes. - : Springer Science and Business Media LLC. - 0145-479X .- 1573-6881. ; 45:1-2, s. 111-120
  • Tidskriftsartikel (refereegranskat)abstract
    • The Mn4CaO5 cluster of photosystem II (PSII) catalyzes the oxidation of water to molecular oxygen through the light-driven redox S-cycle. The water oxidizing complex (WOC) forms a triad with Tyrosine(Z) and P-680, which mediates electrons from water towards the acceptor side of PSII. Under certain conditions two other redox-active components, Tyrosine(D) (Y-D) and Cytochrome b (559) (Cyt b (559)) can also interact with the S-states. In the present work we investigate the electron transfer from Cyt b (559) and Y-D to the S-2 and S-3 states at 195 K. First, Y-D (aEuro cent) and Cyt b (559) were chemically reduced. The S-2 and S-3 states were then achieved by application of one or two laser flashes, respectively, on samples stabilized in the S-1 state. EPR signals of the WOC (the S-2-state multiline signal, ML-S-2), Y-D (aEuro cent) and oxidized Cyt b (559) were simultaneously detected during a prolonged dark incubation at 195 K. During 163 days of incubation a large fraction of the S-2 population decayed to S-1 in the S-2 samples by following a single exponential decay. Differently, S-3 samples showed an initial increase in the ML-S-2 intensity (due to S-3 to S-2 conversion) and a subsequent slow decay due to S-2 to S-1 conversion. In both cases, only a minor oxidation of Y-D was observed. In contrast, the signal intensity of the oxidized Cyt b (559) showed a two-fold increase in both the S-2 and S-3 samples. The electron donation from Cyt b (559) was much more efficient to the S-2 state than to the S-3 state.
  •  
4.
  • Geijer, Paulina, et al. (författare)
  • Comparative studies of the S0 and S2 multiline electron paramagnetic resonance signals from the manganese cluster in Photosystem II
  • 2001
  • Ingår i: Biochimica et Biophysica Acta - Bioenergetics. - 0005-2728. ; 1503:1-2, s. 83-95
  • Tidskriftsartikel (refereegranskat)abstract
    • Electron paramagnetic resonance (EPR) spectroscopy is one of the major techniques used to analyse the structure and function of the water oxidising complex (WOC) in Photosystem II. The discovery of an EPR signal from the S0 state has opened the way for new experiments, aiming to characterise the S0 state and elucidate the differences between the different S states. We present a review of the biochemical and biophysical characterisation of the S0 state multiline signal that has evolved since its discovery, and compare these results to previous and recent data from the S2 multiline signal. We also present some new data from the S2 state reached on the second turnover of the enzyme.
  •  
5.
  •  
6.
  • Geijer, Paulina, et al. (författare)
  • Proton Equilibria in the Manganese Cluster of Photosystem II Control the Intensities of the S0 and S2 State g ~ 2 Electron Paramagnetic Resonance Signals
  • 2000
  • Ingår i: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 39:23, s. 6763-6772
  • Tidskriftsartikel (refereegranskat)abstract
    • We have studied the pH effect on the S0 and S2 multiline electron paramagnetic resonance (EPR) signals from the water-oxidizing complex of photosystem II. Around pH 6, the maximum signal intensities were detected. On both the acidic and alkaline sides of pH 6, the intensities of the EPR signals decreased. Two pKs were determined for the S0 multiline signal; pK1 = 4.2 ± 0.2 and pK2 = 8.0 ± 0.1, and for the S2 multiline signal the pKs were pK1 = 4.5 ± 0.1 and pK2 = 7.6 ± 0.1. The intensity of the S0-state EPR signal was partly restored when the pH was changed from acidic or alkaline pH back to pH ~ 6. In the S2 state we observed partial recovery of the multiline signal when going from alkaline pH back to pH 6, whereas no significant recovery of the S2 multiline signal was observed when the pH was changed from acidic pH back to pH 6. Several possible explanations for the intensity changes as a function of pH are discussed. Some are ruled out, such as disintegration of the Mn cluster or decay of the S states and formal Cl- and Ca2+ depletion. The altered EPR signal intensities probably reflect the protonation/deprotonation of ligands to the Mn cluster or the oxo bridges between the Mn ions. Also, the possibility of decreased multiline signal intensities at alkaline pH as an effect of changed redox potential of YZ is put forward.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy