SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(De Marinis Yang) "

Sökning: WFRF:(De Marinis Yang)

  • Resultat 1-10 av 30
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aldén, Markus, et al. (författare)
  • Intracellular Reverse Transcription of Pfizer BioNTech COVID-19 mRNA Vaccine BNT162b2 In Vitro in Human Liver Cell Line
  • 2022
  • Ingår i: Current Issues in Molecular Biology. - : MDPI AG. - 1467-3045. ; 44:3, s. 1115-1126
  • Tidskriftsartikel (refereegranskat)abstract
    • Preclinical studies of COVID-19 mRNA vaccine BNT162b2, developed by Pfizer and BioNTech, showed reversible hepatic effects in animals that received the BNT162b2 injection. Furthermore, a recent study showed that SARS-CoV-2 RNA can be reverse-transcribed and in-tegrated into the genome of human cells. In this study, we investigated the effect of BNT162b2 on the human liver cell line Huh7 in vitro. Huh7 cells were exposed to BNT162b2, and quantitative PCR was performed on RNA extracted from the cells. We detected high levels of BNT162b2 in Huh7 cells and changes in gene expression of long interspersed nuclear element-1 (LINE-1), which is an endogenous reverse transcriptase. Immunohistochemistry using antibody binding to LINE-1 open reading frame-1 RNA-binding protein (ORFp1) on Huh7 cells treated with BNT162b2 indicated increased nucleus distribution of LINE-1. PCR on genomic DNA of Huh7 cells exposed to BNT162b2 amplified the DNA sequence unique to BNT162b2. Our results indicate a fast up-take of BNT162b2 into human liver cell line Huh7, leading to changes in LINE-1 expression and distribution. We also show that BNT162b2 mRNA is reverse transcribed intracellularly into DNA in as fast as 6 h upon BNT162b2 exposure.
  •  
2.
  • De Marinis, Yang, et al. (författare)
  • Detection of SARS-CoV-2 by rapid antigen tests on saliva in hospitalized patients with COVID-19
  • 2021
  • Ingår i: Infection Ecology and Epidemiology. - : Informa UK Limited. - 2000-8686. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The COVID-19 pandemic presents great challenges on transmission prevention, and rapid diagnosis is essential to reduce the disease spread. Various diagnostic methods are available to identify an ongoing infection by nasopharyngeal (NPH) swab sampling. However, the procedure requires handling by health care professionals, and therefore limits the application in household and community settings. Objectives: In this study, we aimed to determine if the detection of SARS-CoV-2 can be performed alternatively on saliva specimens by rapid antigen test. Study Design: Saliva and NPH specimens were collected from 44 patients with confirmed COVID-19. To assess the diagnostic accuracy of point-of-care SARS-CoV-2 rapid antigen test on saliva specimens, we compared the performance of four test products. Results: RT-qPCR was performed and NPH and saliva sampling had similar Ct values, which associated with disease duration. All four antigen tests showed similar trend in detecting SARS-CoV-2 in saliva, but with variation in the ability to detect positive cases. The rapid antigen test with the best performance could detect up to 67% of the positive cases with Ct values lower than 25, and disease duration shorter than 10 days. Conclusion: Our study therefore supports saliva testing as an alternative diagnostic procedure to NPH testing, and that rapid antigen test on saliva provides a potential complement to PCR test to meet increasing screening demand.
  •  
3.
  • De Marinis, Yang, et al. (författare)
  • Serology assessment of antibody response to SARS-CoV-2 in patients with COVID-19 by rapid IgM/IgG antibody test
  • 2020
  • Ingår i: Infection Ecology and Epidemiology. - : Informa UK Limited. - 2000-8686. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The coronavirus disease 2019 (COVID-19) pandemic has created a global health- and economic crisis. Detection of antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which causes COVID-19 by serological methods is important to diagnose a current or resolved infection. In this study, we applied a rapid COVID-19 IgM/IgG antibody test and performed serology assessment of antibody response to SARS-CoV-2. In PCR-confirmed COVID-19 patients (n = 45), the total antibody detection rate is 92% in hospitalized patients and 79% in non-hospitalized patients. The total IgM and IgG detection is 63% in patients with <2 weeks from disease onset; 85% in non-hospitalized patients with >2 weeks disease duration; and 91% in hospitalized patients with >2 weeks disease duration. We also compared different blood sample types and suggest a higher sensitivity by serum/plasma over whole blood. Test specificity was determined to be 97% on 69 sera/plasma samples collected between 2016-2018. Our study provides a comprehensive validation of the rapid COVID-19 IgM/IgG serology test, and mapped antibody detection patterns in association with disease progress and hospitalization. Our results support that the rapid COVID-19 IgM/IgG test may be applied to assess the COVID-19 status both at the individual and at a population level.
  •  
4.
  • Bompada, Pradeep, et al. (författare)
  • Epigenome-Wide Histone Acetylation Changes in Peripheral Blood Mononuclear Cells in Patients with Type 2 Diabetes and Atherosclerotic Disease
  • 2021
  • Ingår i: Biomedicines. - : MDPI AG. - 2227-9059. ; 9:12
  • Tidskriftsartikel (refereegranskat)abstract
    • There is emerging evidence of an association between epigenetic modifications, glycemic control and atherosclerosis risk. In this study, we mapped genome-wide epigenetic changes in patients with type 2 diabetes (T2D) and advanced atherosclerotic disease. We performed chromatin immunoprecipitation sequencing (ChIP-seq) using a histone 3 lysine 9 acetylation (H3K9ac) mark in peripheral blood mononuclear cells from patients with atherosclerosis with T2D (n = 8) or without T2D (ND, n = 10). We mapped epigenome changes and identified 23,394 and 13,133 peaks in ND and T2D individuals, respectively. Out of all the peaks, 753 domains near the transcription start site (TSS) were unique to T2D. We found that T2D in atherosclerosis leads to an H3K9ac increase in 118, and loss in 63 genomic regions. Furthermore, we discovered an association between the genomic locations of significant H3K9ac changes with genetic variants identified in previous T2D GWAS. The transcription factor 7-like 2 (TCF7L2) rs7903146, together with several human leukocyte antigen (HLA) variants, were among the domains with the most dramatic changes of H3K9ac enrichments. Pathway analysis revealed multiple activated pathways involved in immunity, including type 1 diabetes. Our results present novel evidence on the interaction between genetics and epigenetics, as well as epigenetic changes related to immunity in patients with T2D and advanced atherosclerotic disease.
  •  
5.
  • Cai, Mengyin, et al. (författare)
  • Epigenetic regulation of glucose-stimulated osteopontin (OPN) expression in diabetic kidney.
  • 2016
  • Ingår i: Biochemical and Biophysical Research Communications. - : Elsevier BV. - 1090-2104 .- 0006-291X. ; 469:1, s. 108-113
  • Tidskriftsartikel (refereegranskat)abstract
    • Diabetes nephropathy (DN) is the leading cause of end stage renal disease and it affects up to 40% of diabetic patients. In addition to hyperglycemia, genetic factors are thought to contribute to the development of DN, but few if any genetic factors have been convincingly linked to DN. Other possible mechanisms may involve epigenetic regulation of glucose-stimulated gene activity which was suggested to explain long-term effects of poor glycemic control on risk of diabetic complications, often referred to as metabolic memory. Osteopontin (OPN) is one of the genes upregulated in kidneys from diabetic mouse models as well as humans with DN, and suggested to play an important role in the pathogenesis of DN. In this study, we demonstrated that OPN gene expression is upregulated in the kidneys of a hyperglycemia diabetes mouse model SUR1-E1506K, and glucose-stimulated OPN gene expression is strongly associated with increases in activating histone marks H3K9ac, H3K4me1 and H3K4me3 and decrease in inactivating mark H3K27me3 in the promoter region of OPN gene. These findings were replicated in human mesangial cells treated with high glucose. Further proof for the involvement of histone acetylation and methylation in glucose-induced changes in OPN gene expression was obtained by manipulating histone modifications thereby OPN gene expression by histone deacetylase (HDAC) inhibitor trichostatin A and histone methyltransferase (HMT) inhibitor MM-102. We conclude that glucose is a potent inducer of histone acetylation and methylation, which in turn leads to upregulation of OPN gene expression. Treatment targeting histone marks may therefore represent an alternative method to protect kidneys from deleterious effects of glucose.
  •  
6.
  • Cai, Mengyin, et al. (författare)
  • Role of osteopontin and its regulation in pancreatic islet
  • 2018
  • Ingår i: Biochemical and Biophysical Research Communications. - : Elsevier BV. - 0006-291X. ; 495:1, s. 1426-1431
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteopontin (OPN) is involved in various physiological processes and also implicated in multiple pathological states. It has been suggested that OPN may have a role in type 2 diabetes (T2D) by protecting pancreatic islets and interaction with incretins. However, the regulation and function of OPN in islets, especially in humans, remains largely unexplored. In this study, we performed our investigations on both diabetic mouse model SUR1-E1506K+/+ and islets from human donors. We demonstrated that OPN protein, secretion and gene expression was elevated in the diabetic SUR1-E1506K+/+ islets. We also showed that high glucose and incretins simultaneously stimulated islet OPN secretion. In islets from human cadaver donors, OPN gene expression was elevated in diabetic islets, and externally added OPN significantly increased glucose-stimulated insulin secretion (GSIS) from diabetic but not normal glycemic donors. The increase in GSIS by OPN in diabetic human islets was Ca2+ dependent, which was abolished by Ca2+-channel inhibitor isradipine. Furthermore, we also confirmed that OPN promoted cell metabolic activity when challenged by high glucose. These observations provided evidence on the protective role of OPN in pancreatic islets under diabetic condition, and may point to novel therapeutic targets for islet protection in T2D.
  •  
7.
  • De Marinis, Yang, et al. (författare)
  • Enhancement of glucagon secretion in mouse and human pancreatic alpha cells by protein kinase C (PKC) involves intracellular trafficking of PKCalpha and PKCdelta.
  • 2010
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 53:4, s. 717-729
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: Protein kinase C (PKC) regulates exocytosis in various secretory cells. Here we studied intracellular translocation of the PKC isoenzymes PKCalpha and PKCdelta, and investigated how activation of PKC influences glucagon secretion in mouse and human pancreatic alpha cells. METHODS: Glucagon release from intact islets was measured in static incubations, and the amounts released were determined by RIA. Exocytosis was monitored as increases in membrane capacitance using the patch-clamp technique. The expression of genes encoding PKC isoforms was analysed by real-time PCR. Intracellular PKC distribution was assessed by confocal microscopy. RESULTS: The PKC activator phorbol 12-myristate 13-acetate (PMA) stimulated glucagon secretion from mouse and human islets about fivefold (p < 0.01). This stimulation was abolished by the PKC inhibitor bisindolylmaleimide (BIM). Whereas PMA potentiated exocytosis more than threefold (p < 0.001), BIM inhibited alpha cell exocytosis by 60% (p < 0.05). In mouse islets, the PKC isoenzymes, PKCalpha and PKCbeta1, were highly abundant, while in human islets PKCeta, PKCepsilon and PKCzeta were the dominant variants. PMA stimulation of human alpha cells correlated with the translocation of PKCalpha and PKCdelta from the cytosol to the cell periphery. In the mouse alpha cells, PKCdelta was similarly affected by PMA, whereas PKCalpha was already present at the cell membrane in the absence of PMA. This association of PKCalpha in alpha cells was principally dependent on Ca(2+) influx through the L-type Ca(2+) channel. CONCLUSIONS/INTERPRETATION: PKC activation augments glucagon secretion in mouse and human alpha cells. This effect involves translocation of PKCalpha and PKCdelta to the plasma membrane, culminating in increased Ca(2+)-dependent exocytosis. In addition, we demonstrated that PKCalpha translocation and exocytosis exhibit differential Ca(2+) channel dependence.
  •  
8.
  • De Marinis, Yang, et al. (författare)
  • Epigenetic regulation of the thioredoxin-interacting protein (TXNIP) gene by hyperglycemia in kidney.
  • 2016
  • Ingår i: Kidney International. - : Elsevier BV. - 1523-1755 .- 0085-2538. ; 89:2, s. 342-353
  • Tidskriftsartikel (refereegranskat)abstract
    • Diabetic kidney disease is the leading cause of end-stage renal disease. Genetic factors have been suggested to contribute to its susceptibility. However, results from genetic studies are disappointing possibly because the role of glucose in diabetic kidney disease predisposed by epigenetic mechanisms has not been taken into account. Since thioredoxin-interacting protein (TXNIP) has been shown to play an important role in the pathogenesis of diabetic kidney disease, we tested whether glucose could induce expression of TXNIP in the kidney by epigenetic mechanisms. In kidneys from diabetic Sur1-E1506K(+/+) mice, hyperglycemia-induced Txnip expression was associated with stimulation of activating histone marks H3K9ac, H3K4me3, and H3K4me1, as well as decrease in the repressive histone mark H3K27me3 at the promoter region of the gene. Glucose also coordinated changes in histone marks and TXNIP gene expression in mouse SV40 MES13 mesangial cells and the normal human mesangial cell line NHMC. The involvement of histone acetylation in glucose-stimulated TXNIP expression was confirmed by reversing or enhancing acetylation using the histone acetyltransferase p300 inhibitor C646 or the histone deacetylase inhibitor trichostatin A. Thus, glucose is a potent inducer of histone modifications, which could drive expression of proinflammatory genes and thereby predispose to diabetic kidney disease.
  •  
9.
  • De Marinis, Yang, et al. (författare)
  • GLP-1 inhibits and adrenaline stimulates glucagon release by differential modulation of N- and L-type Ca2+ channel-dependent exocytosis.
  • 2010
  • Ingår i: Cell Metabolism. - : Elsevier BV. - 1550-4131. ; 11:6, s. 543-553
  • Tidskriftsartikel (refereegranskat)abstract
    • Glucagon secretion is inhibited by glucagon-like peptide-1 (GLP-1) and stimulated by adrenaline. These opposing effects on glucagon secretion are mimicked by low (1-10 nM) and high (10 muM) concentrations of forskolin, respectively. The expression of GLP-1 receptors in alpha cells is <0.2% of that in beta cells. The GLP-1-induced suppression of glucagon secretion is PKA dependent, is glucose independent, and does not involve paracrine effects mediated by insulin or somatostatin. GLP-1 is without much effect on alpha cell electrical activity but selectively inhibits N-type Ca(2+) channels and exocytosis. Adrenaline stimulates alpha cell electrical activity, increases [Ca(2+)](i), enhances L-type Ca(2+) channel activity, and accelerates exocytosis. The stimulatory effect is partially PKA independent and reduced in Epac2-deficient islets. We propose that GLP-1 inhibits glucagon secretion by PKA-dependent inhibition of the N-type Ca(2+) channels via a small increase in intracellular cAMP ([cAMP](i)). Adrenaline stimulates L-type Ca(2+) channel-dependent exocytosis by activation of the low-affinity cAMP sensor Epac2 via a large increase in [cAMP](i).
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 30

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy