SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(De Paoli Emanuele) "

Sökning: WFRF:(De Paoli Emanuele)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Olsen, Jeanine L, et al. (författare)
  • The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea.
  • 2016
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 530:7590, s. 331-5
  • Tidskriftsartikel (refereegranskat)abstract
    • Seagrasses colonized the sea on at least three independent occasions to form the basis of one of the most productive and widespread coastal ecosystems on the planet. Here we report the genome of Zostera marina (L.), the first, to our knowledge, marine angiosperm to be fully sequenced. This reveals unique insights into the genomic losses and gains involved in achieving the structural and physiological adaptations required for its marine lifestyle, arguably the most severe habitat shift ever accomplished by flowering plants. Key angiosperm innovations that were lost include the entire repertoire of stomatal genes, genes involved in the synthesis of terpenoids and ethylene signalling, and genes for ultraviolet protection and phytochromes for far-red sensing. Seagrasses have also regained functions enabling them to adjust to full salinity. Their cell walls contain all of the polysaccharides typical of land plants, but also contain polyanionic, low-methylated pectins and sulfated galactans, a feature shared with the cell walls of all macroalgae and that is important for ion homoeostasis, nutrient uptake and O2/CO2 exchange through leaf epidermal cells. The Z. marina genome resource will markedly advance a wide range of functional ecological studies from adaptation of marine ecosystems under climate warming, to unravelling the mechanisms of osmoregulation under high salinities that may further inform our understanding of the evolution of salt tolerance in crop plants.
  •  
2.
  • Condoluci, Adalgisa, et al. (författare)
  • International prognostic score for asymptomatic early-stage chronic lymphocytic leukemia
  • 2020
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 135:21, s. 1859-1869
  • Tidskriftsartikel (refereegranskat)abstract
    • Most patients with chronic lymphocytic leukemia (CLL) are diagnosed with early-stage disease and managed with active surveillance. The individual course of patients with early-stage CLL is heterogeneous, and their probability of needing treatment is hardly anticipated at diagnosis. We aimed at developing an international prognostic score to predict time to first treatment (TTFT) in patients with CLL with early, asymptomatic disease (International Prognostic Score for Early-stage CLL [IPS-E]). Individual patient data from 11 international cohorts of patients with early-stage CLL (n = 4933) were analyzed to build and validate the prognostic score. Three covariates were consistently and independently correlated with TTFT: unmutated immunoglobulin heavy variable gene (IGHV), absolute lymphocyte count higher than 15 x 10(9)/L, and presence of palpable lymph nodes. The IPS-E was the sum of the covariates (1 point each), and separated low-risk (score 0), intermediate-risk (score 1), and high-risk (score 2-3) patients showing a distinct TTFT. The score accuracy was validated in 9 cohorts staged by the Binet system and 1 cohort staged by the Rai system. The C-index was 0.74 in the training series and 0.70 in the aggregate of validation series. By meta-analysis of the training and validation cohorts, the 5-year cumulative risk for treatment start was 8.4%, 28.4%, and 61.2% among low-risk, intermediate-risk, and high-risk patients, respectively. The IPS-E is a simple and robust prognostic model that predicts the likelihood of treatment requirement in patients with early-stage CLL. The IPS-E can be useful in clinical management and in the design of early intervention clinical trials.
  •  
3.
  • Heuertz, Myriam, et al. (författare)
  • Multilocus patterns of nucleotide diversity, linkage disequilibrium and demographic history of Norway spruce [Picea abies (L.) Karst]
  • 2006
  • Ingår i: Genetics. - : Oxford University Press (OUP). - 0016-6731 .- 1943-2631. ; 174:4, s. 2095-2105
  • Tidskriftsartikel (refereegranskat)abstract
    • DNA polymorphism at 22 loci was studied in an average of 47 Norway spruce [Picea abies (L.) Karst.] haplotypes sampled in seven populations representative of the natural range. The overall nucleotide variation was limited, being lower than that observed in most plant species so far studied. Linkage disequilibrium was also restricted and did not extend beyond a few hundred base pairs. All populations, with the exception of the Romanian population, could be divided into two main domains, a Baltico-Nordic and an Alpine one. Mean Tajima's D and Fay and Wu's H across loci were both negative, indicating the presence of an excess of both rare and high-frequency-derived variants compared to the expected frequency spectrum in a standard neutral model. Multilocus neutrality tests based on D and H led to the rejection of the standard neutral model and exponential growth in the whole population as well as in the two main domains. On the other hand, in all three cases the data are compatible with a severe bottleneck occurring some hundreds of thousands of years ago. Hence, demographic departures from equilibrium expectations and population structure will have to be accounted for when detecting selection at candidate genes and in association mapping studies, respectively.
  •  
4.
  • Larsson, Hanna, et al. (författare)
  • The HypoMethylated Partial Restriction (HMPR) method reduces the repetitive content of genomic libraries in Norway spruce (Picea abies)
  • 2013
  • Ingår i: Tree Genetics & Genomes. - : Springer Science and Business Media LLC. - 1614-2942 .- 1614-2950. ; 9:2, s. 601-612
  • Tidskriftsartikel (refereegranskat)abstract
    • To evaluate the usefulness of Reduced Representation Libraries (RRL) in species with large and highly repetitive genomes such as conifers, we employed Hypomethylated Partial Restriction (HMPR) on the genome of Norway spruce (Picea abies). The HMPR method preferentially removes the commonly hypermethylated, repetitive fraction of the genome. Hence, RRLs should be enriched for the hypomethylated gene space. For comparison, a standard shotgun library was constructed and samples of the respective libraries were obtained through Sanger sequencing. We obtained a 9-fold gene enrichment, a value which is slightly higher than for other plant species. The amount of repetitive DNA was reduced by 45 % in the RRLs, demonstrating the ability to efficiently remove hypermethylated DNA. Annotating sequences in an uncharacterized genome remains challenging and a large number of sequences could not be classified as either repetitive DNA or as belonging to the gene space. Upon further investigation, we found that some of these uncharacterized fragments were expressed, and in most cases the expression was spatially differentiated, indicating that they might have a function. Full-length transcripts of a subset of expressed fragments also revealed that these could be long non-coding RNAs. In conclusion, our study shows that the HMPR method is effective in constructing libraries enriched for the genic fraction of the genome, while simultaneously reducing the repetitive fraction, in P. abies and may prove a valuable tool for the discovery, validation, and assessment of genetic markers in population studies and breeding efforts when combined with next-generation sequencing technology.
  •  
5.
  • Zuccolo, Andrea, et al. (författare)
  • The Ty1-copia LTR retroelement family PARTC is highly conserved in conifers over 200 MY of evolution
  • 2015
  • Ingår i: Gene. - : Elsevier BV. - 0378-1119 .- 1879-0038. ; 568:1, s. 89-99
  • Tidskriftsartikel (refereegranskat)abstract
    • Long Terminal Repeat retroelements (LTR-RTs) are a major component of many plant genomes. Although well studied and described in angiosperms, their features and dynamics are poorly understood in gymnosperms. Representative complete copies of a Ty1-copia element isolate in Picea abies and named PARTC were identified in six other conifer species (Picea glauca, Pinus sylvestris, Pinus taeda, Abies sibirica, Taxus baccata and Juniperus communis) covering more than 200 million years of evolution. Here we characterized the structure of this element, assessed its abundance across conifers, studied the modes and timing of its amplification, and evaluated the degree of conservation of its extant copies at nucleotide level over distant species. We demonstrated that the element is ancient, abundant, widespread and its paralogous copies are present in the genera Picea, Pinus and Abies as an LTR-RT family. The amplification leading to the extant copies of PARTC occurred over long evolutionary times spanning 10 s of MY and mostly took place after the speciation of the conifers analyzed. The level of conservation of PARTC is striking and may be explained by low substitution rates and limited removal mechanisms for LTR-RTs. These PARTC features and dynamics are representative of a more general scenario for LTR-RTs in gymnosperms quite different from that characterizing the vast majority of LTR-RT elements in angiosperms. (C) 2015 Elsevier B.V. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy