SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(DeLong Edward F) "

Sökning: WFRF:(DeLong Edward F)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kyrpides, Nikos C, et al. (författare)
  • Genomic encyclopedia of bacteria and archaea: sequencing a myriad of type strains.
  • 2014
  • Ingår i: PLoS biology. - : Public Library of Science (PLoS). - 1545-7885. ; 12:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Microbes hold the key to life. They hold the secrets to our past (as the descendants of the earliest forms of life) and the prospects for our future (as we mine their genes for solutions to some of the planet's most pressing problems, from global warming to antibiotic resistance). However, the piecemeal approach that has defined efforts to study microbial genetic diversity for over 20 years and in over 30,000 genome projects risks squandering that promise. These efforts have covered less than 20% of the diversity of the cultured archaeal and bacterial species, which represent just 15% of the overall known prokaryotic diversity. Here we call for the funding of a systematic effort to produce a comprehensive genomic catalog of all cultured Bacteria and Archaea by sequencing, where available, the type strain of each species with a validly published name (currently∼11,000). This effort will provide an unprecedented level of coverage of our planet's genetic diversity, allow for the large-scale discovery of novel genes and functions, and lead to an improved understanding of microbial evolution and function in the environment.
  •  
2.
  • Dinasquet, Julie (författare)
  • Substrate control of community composition and functional adaptation in marine bacterioplankton
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • A drop of sea-water is teeming with a million of bacteria, on which pelagic food-webs and biogeochemical cycles depend. These bacteria thrive on a wide range of dissolved organic carbon (DOC) compounds produced through biotic and abiotic processes. Molecular analyses have over the past decades shown that specific bacterial taxa differ in their capacity to exploit DOC, suggesting a tight link between bacterial community composition (BCC) and ocean biogeo-chemistry. Therefore, an understanding of how resource availability and mortality agents drive BCC and bacterial functional adaptation is a prerequisit for predictions of how marine ecosystems will respond to future global change.In this thesis, I have studied BCC and bacterial functionality in response to various controlling factors relevant in an environmental changes perspective. For instance, the extensive regional warming in Antarctica induces the proliferation of icebergs. By investigating the bacterioplankton in the surrounding of a drifting iceberg, hydrographical perturbations driven by the iceberg were found to affect BCC, functionality and the capacity of indigenous taxa to utilize specific DOC compounds. Furthermore, a study of community succession during DOC utilization assays demonstrated that bacterial assemblages adapt to the gradual exhaustion of available DOC through community compositional succession. In addition, the variation in substrate availability and temperature may also affect BCC in eutrophic systems.While substrate availability can have an important impact on BCC and bacterial functionality, it is also important to study the cascading effects of higher trophic levels on bacteria. During a mesocosm experiment, the presence of an invasive gelatinous top-predator was shown to have only limited effects on the structure and function of the bacterial community in the Baltic Sea due to nutrient limiting conditions and to the overall complexity of the food-web. However, this top-predator may have direct bottom-up impact on bacteria in its close surrounding.The results presented in this thesis show that the bacterioplankton is sensitive to the availability of substrates and that bacterial community composition responds to contemporary environmental conditions. These results contribute to our understanding of how ecosystem disturbances affect marine bacterioplankton; insights of relevance to biogeochemistry and food-webs in the oceans.
  •  
3.
  • Pelve, Erik A., 1980-, et al. (författare)
  • Bacterial Succession on Sinking Particles in the Ocean's Interior
  • 2017
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media SA. - 1664-302X. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Sinking particles formed in the photic zone and moving vertically through the water column are a main mechanism for nutrient transport to the deep ocean, and a key component of the biological carbon pump. The particles appear to be processed by a microbial community substantially different from the surrounding waters. Single cell genomics and metagenomics were employed to describe the succession of dominant bacterial groups during particle processing. Sinking particles were extracted from sediment traps at Station Aloha in the North Pacific Subtropical Gyre (NPSG) during two different trap deployments conducted in July and August 2012. The microbial communities in poisoned vs. live sediment traps differed significantly from one another, consistent with prior observations by Fontanez et al. (2015). Partial genomes from these communities were sequenced from cells belonging to the genus Arcobacter (commensalists potentially associated with protists such as Radiolaria), and Vibrio carnpbellii (a group previously reported to be associated with crustacea). These bacteria were found in the particle-associated communities at specific depths in both trap deployments, presumably due to their specific host-associations. Partial genomes were also sequenced from cells belonging to Idiomarina and Kangiella that were enriched in live traps over a broad depth range, that represented a motile copiotroph and a putatively non-motile algicidal saprophyte, respectively. Planktonic bacterial cells most likely caught in the wake of the particles belonging to Actinomarina and the SAR11 Glade were also sequenced. Our results suggest that similar groups of eukaryote-associated bacteria are consistently found on sinking particles at different times, and that particle remineralization involves specific, reproducible bacterial succession events in oligotrophic ocean waters.
  •  
4.
  • Pinhassi, Jarone, et al. (författare)
  • Marine bacterial and archaeal ion-pumping rhodopsins : genetic diversity, physiology, and ecology
  • 2016
  • Ingår i: Microbiology and molecular biology reviews. - 1092-2172 .- 1098-5557. ; 80:4, s. 929-954
  • Forskningsöversikt (refereegranskat)abstract
    • The recognition of a new family of rhodopsins in marine planktonic bacteria, proton-pumping proteorhodopsin, expanded the known phylogenetic range, environmental distribution, and sequence diversity of retinylidene photoproteins. At the time of this discovery, microbial ion-pumping rhodopsins were known solely in haloarchaea inhabiting extreme hypersaline environments. Shortly thereafter, proteorhodopsins and other light-activated energy-generating rhodopsins were recognized to be widespread among marine bacteria. The ubiquity of marine rhodopsin photosystems now challenges prior understanding of the nature and contributions of "heterotrophic" bacteria to biogeochemical carbon cycling and energy fluxes. Subsequent investigations have focused on the biophysics and biochemistry of these novel microbial rhodopsins, their distribution across the tree of life, evolutionary trajectories, and functional expression in nature. Later discoveries included the identification of proteorhodopsin genes in all three domains of life, the spectral tuning of rhodopsin variants to wavelengths prevailing in the sea, variable light-activated ion-pumping specificities among bacterial rhodopsin variants, and the widespread lateral gene transfer of biosynthetic genes for bacterial rhodopsins and their associated photopigments. Heterologous expression experiments with marine rhodopsin genes (and associated retinal chromophore genes) provided early evidence that light energy harvested by rhodopsins could be harnessed to provide biochemical energy. Importantly, some studies with native marine bacteria show that rhodopsin-containing bacteria use light to enhance growth or promote survival during starvation. We infer from the distribution of rhodopsin genes in diverse genomic contexts that different marine bacteria probably use rhodopsins to support lightdependent fitness strategies somewhere between these two extremes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy