SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Deco Gustavo) "

Sökning: WFRF:(Deco Gustavo)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hahn, Gerald, et al. (författare)
  • Portraits of communication in neuronal networks
  • 2019
  • Ingår i: Nature Reviews Neuroscience. - : NATURE PUBLISHING GROUP. - 1471-003X .- 1471-0048. ; 20:2, s. 117-127
  • Forskningsöversikt (refereegranskat)abstract
    • The brain is organized as a network of highly specialized networks of spiking neurons. To exploit such a modular architecture for computation, the brain has to be able to regulate the flow of spiking activity between these specialized networks. In this Opinion article, we review various prominent mechanisms that may underlie communication between neuronal networks. We show that communication between neuronal networks can be understood as trajectories in a two-dimensional state space, spanned by the properties of the input. Thus, we propose a common framework to understand neuronal communication mediated by seemingly different mechanisms. We also suggest that the nesting of slow (for example, alpha-band and theta-band) oscillations and fast (gamma-band) oscillations can serve as an important control mechanism that allows or prevents spiking signals to be routed between specific networks. We argue that slow oscillations can modulate the time required to establish network resonance or entrainment and, thereby, regulate communication between neuronal networks.
  •  
2.
  • Hahn, Gerald, et al. (författare)
  • Rate and oscillatory switching dynamics of a multilayer visual microcircuit model
  • 2022
  • Ingår i: eLIFE. - : eLife Sciences Publications, Ltd. - 2050-084X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • The neocortex is organized around layered microcircuits consisting of a variety of excitatory and inhibitory neuronal types which perform rate- and oscillation-based computations. Using modeling, we show that both superficial and deep layers of the primary mouse visual cortex implement two ultrasensitive and bistable switches built on mutual inhibitory connectivity motives between somatostatin, parvalbumin, and vasoactive intestinal polypeptide cells. The switches toggle pyramidal neurons between high and low firing rate states that are synchronized across layers through translaminar connectivity. Moreover, inhibited and disinhibited states are characterized by low- and high-frequency oscillations, respectively, with layer-specific differences in frequency and power which show asymmetric changes during state transitions. These findings are consistent with a number of experimental observations and embed firing rate together with oscillatory changes within a switch interpretation of the microcircuit.
  •  
3.
  • Hahn, Gerald, et al. (författare)
  • Spontaneous cortical activity is transiently poised close to criticality
  • 2017
  • Ingår i: PloS Computational Biology. - : Public Library of Science. - 1553-734X .- 1553-7358. ; 13:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Brain activity displays a large repertoire of dynamics across the sleep-wake cycle and even during anesthesia. It was suggested that criticality could serve as a unifying principle underlying the diversity of dynamics. This view has been supported by the observation of spontaneous bursts of cortical activity with scale-invariant sizes and durations, known as neuronal avalanches, in recordings of mesoscopic cortical signals. However, the existence of neuronal avalanches in spiking activity has been equivocal with studies reporting both its presence and absence. Here, we show that signs of criticality in spiking activity can change between synchronized and desynchronized cortical states. We analyzed the spontaneous activity in the primary visual cortex of the anesthetized cat and the awake monkey, and found that neuronal avalanches and thermodynamic indicators of criticality strongly depend on collective synchrony among neurons, LFP fluctuations, and behavioral state. We found that synchronized states are associated to criticality, large dynamical repertoire and prolonged epochs of eye closure, while desynchronized states are associated to sub-criticality, reduced dynamical repertoire, and eyes open conditions. Our results show that criticality in cortical dynamics is not stationary, but fluctuates during anesthesia and between different vigilance states.
  •  
4.
  • Padilla, Nelly, et al. (författare)
  • Breakdown of Whole-brain Dynamics in Preterm-born Children
  • 2020
  • Ingår i: Cerebral Cortex. - : Oxford University Press (OUP). - 1047-3211 .- 1460-2199. ; 30:3, s. 1159-1170
  • Tidskriftsartikel (refereegranskat)abstract
    • The brain operates at a critical point that is balanced between order and disorder. Even during rest, unstable periods of random behavior are interspersed with stable periods of balanced activity patterns that support optimal information processing. Being born preterm may cause deviations from this normal pattern of development. We compared 33 extremely preterm (EPT) children born at < 27 weeks of gestation and 28 full-term controls. Two approaches were adopted in both groups, when they were 10 years of age, using structural and functional brain magnetic resonance imaging data. The first was using a novel intrinsic ignition analysis to study the ability of the areas of the brain to propagate neural activity. The second was a whole-brain Hopf model, to define the level of stability, desynchronization, or criticality of the brain. EPT-born children exhibited fewer intrinsic ignition events than controls; nodes were related to less sophisticated aspects of cognitive control, and there was a different hierarchy pattern in the propagation of information and suboptimal synchronicity and criticality. The largest differences were found in brain nodes belonging to the rich-club architecture. These results provide important insights into the neural substrates underlying brain reorganization and neurodevelopmental impairments related to prematurity.
  •  
5.
  • Padilla, Nelly, et al. (författare)
  • Disrupted resting-sate brain network dynamics in children born extremely preterm
  • 2023
  • Ingår i: Cerebral Cortex. - : OXFORD UNIV PRESS INC. - 1047-3211 .- 1460-2199. ; 33:13, s. 8101-8109
  • Tidskriftsartikel (refereegranskat)abstract
    • The developing brain has to adapt to environmental and intrinsic insults after extremely preterm (EPT) birth. Ongoing maturational processes maximize their fit to the environment and this can provide a substrate for neurodevelopmental failures. Resting-state functional magnetic resonance imaging was used to scan 33 children born EPT, at < 27 weeks of gestational age, and 26 full-term controls at 10 years of age. We studied the capability of a brain area to propagate neural information (intrinsic ignition) and its variability across time (node-metastability). This framework was computed for the dorsal attention network (DAN), frontoparietal, default-mode network (DMN), and the salience, limbic, visual, and somatosensory networks. The EPT group showed reduced intrinsic ignition in the DMN and DAN, compared with the controls, and reduced node-metastability in the DMN, DAN, and salience networks. Intrinsic ignition and node-metastability values correlated with cognitive performance at 12 years of age in both groups, but only survived in the term group after adjustment. Preterm birth disturbed the signatures of functional brain organization at rest in 3 core high-order networks: DMN, salience, and DAN. Identifying vulnerable resting-state networks after EPT birth may lead to interventions that aim to rebalance brain function.
  •  
6.
  • Pannunzi, Mario, et al. (författare)
  • Resting-state fMRI correlations : From link-wise unreliability to whole brain stability
  • 2017
  • Ingår i: NeuroImage. - : Elsevier BV. - 1053-8119. ; 157, s. 250-262
  • Tidskriftsartikel (refereegranskat)abstract
    • The functional architecture of spontaneous BOLD fluctuations has been characterized in detail by numerous studies, demonstrating its potential relevance as a biomarker. However, the systematic investigation of its consistency is still in its infancy. Here, we analyze within- and between-subject variability and test-retest reliability of resting-state functional connectivity (FC) in a unique data set comprising multiple fMRI scans (42) from 5 subjects, and 50 single scans from 50 subjects. We adopt a statistical framework that enables us to identify different sources of variability in FC. We show that the low reliability of single links can be significantly improved by using multiple scans per subject. Moreover, in contrast to earlier studies, we show that spatial heterogeneity in FC reliability is not significant. Finally, we demonstrate that despite the low reliability of individual links, the information carried by the whole-brain FC matrix is robust and can be used as a functional fingerprint to identify individual subjects from the population.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy