SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Decowski M. P.) "

Sökning: WFRF:(Decowski M. P.)

  • Resultat 1-10 av 52
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adrian-Martinez, S., et al. (författare)
  • A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007
  • 2013
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :6
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.
  •  
2.
  • Ageron, M., et al. (författare)
  • ANTARES : The first undersea neutrino telescope
  • 2011
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier. - 0168-9002 .- 1872-9576. ; 656:1, s. 11-38
  • Tidskriftsartikel (refereegranskat)abstract
    • The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design, the construction and the installation of the telescope in the deep sea, offshore from Toulon in France. An illustration of the detector performance is given. (C) 2011 Elsevier B.V. All rights reserved.
  •  
3.
  • Aalbers, Jelle, et al. (författare)
  • Solar neutrino detection sensitivity in DARWIN via electron scattering
  • 2020
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 80:12
  • Tidskriftsartikel (refereegranskat)abstract
    • We detail the sensitivity of the proposed liquid xenon DARWIN observatory to solar neutrinos via elastic electron scattering. We find that DARWIN will have the potential to measure the fluxes of five solar neutrino components: pp, 7Be, 13N, 15O and pep. The precision of the 13N, 15O and pep components is hindered by the double-beta decay of 136Xe and, thus, would benefit from a depleted target. A high-statistics observation of pp neutrinos would allow us to infer the values of the electroweak mixing angle, sin2 theta w, and the electron-type neutrino survival probability, Pee, in the electron recoil energy region from a few keV up to 200 keV for the first time, with relative precision of 5% and 4%, respectively, with 10 live years of data and a 30 tonne fiducial volume. An observation of pp and 7Be neutrinos would constrain the neutrino-inferred solar luminosity down to 0.2%. A combination of all flux measurements would distinguish between the high- (GS98) and low-metallicity (AGS09) solar models with 2.1-2.5 sigma significance, independent of external measurements from other experiments or a measurement of 8B neutrinos through coherent elastic neutrino-nucleus scattering in DARWIN. Finally, we demonstrate that with a depleted target DARWIN may be sensitive to the neutrino capture process of 131Xe.
  •  
4.
  • Aprile, E., et al. (författare)
  • The XENON1T dark matter experiment
  • 2017
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 77:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The XENON1T experiment at the Laboratori Nazionali del Gran Sasso (LNGS) is the first WIMP dark matter detector operating with a liquid xenon target mass above the ton-scale. Out of its 3.2t liquid xenon inventory, 2.0t constitute the active target of the dual-phase time projection chamber. The scintillation and ionization signals from particle interactions are detected with low-background photomultipliers. This article describes the XENON1T instrument and its subsystems as well as strategies to achieve an unprecedented low background level. First results on the detector response and the performance of the subsystems are also presented.
  •  
5.
  • Aprile, E., et al. (författare)
  • Double-weak decays of 124Xe and 136Xe in the XENON1T and XENONnT experiments
  • 2022
  • Ingår i: Physical Review C. - 2469-9985 .- 2469-9993. ; 106:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present results on the search for two-neutrino double-electron capture (2νECEC) of 124Xe and neutrinoless double-β decay (0νββ) of 136Xe in XENON1T. We consider captures from the K shell up to the N shell in the 2νECEC signal model and measure a total half-life of T2νECEC1/2=(1.1±0.2stat±0.1sys)×1022yr with a 0.87 kg yr isotope exposure. The statistical significance of the signal is 7.0σ. We use XENON1T data with 36.16 kg yr of 136Xe exposure to search for 0νββ. We find no evidence of a signal and set a lower limit on the half-life of T0νββ1/2>1.2×1024 yr at 90%CL. This is the best result from a dark matter detector without an enriched target to date. We also report projections on the sensitivity of XENONnT to 0νββ. Assuming a 275 kg yr 136Xe exposure, the expected sensitivity is T0νββ1/2>2.1×1025 yr at 90%CL, corresponding to an effective Majorana mass range of ⟨mββ⟩<(0.19–0.59)eV/c2.
  •  
6.
  • Aprile, E., et al. (författare)
  • Material radioassay and selection for the XENON1T dark matter experiment
  • 2017
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 77:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The XENON1T dark matter experiment aims to detect weakly interactingmassive particles (WIMPs) through low-energy interactions with xenon atoms. To detect such a rare event necessitates the use of radiopure materials to minimize the number of background events within the expected WIMP signal region. In this paper we report the results of an extensive material radioassay campaign for the XENON1T experiment. Using gamma-ray spectroscopy and mass spectrometry techniques, systematic measurements of trace radioactive impurities in over one hundred samples within a wide range of materials were performed. The measured activities allowed for stringent selection and placement of materials during the detector construction phase and provided the input for XENON1T detection sensitivity estimates through Monte Carlo simulations.
  •  
7.
  • Aprile, E., et al. (författare)
  • Search for two-neutrino double electron capture of Xe-124 with XENON100
  • 2017
  • Ingår i: Physical Review C. - 2469-9985. ; 95:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Two-neutrino double electron capture is a rare nuclear decay where two electrons are simultaneously captured from the atomic shell. For Xe-124 this process has not yet been observed and its detection would provide a new reference for nuclear matrix element calculations. We have conducted a search for two-neutrino double electron capture from the K shell of 124Xe using 7636 kg d of data from the XENON100 dark matter detector. Using a Bayesian analysis we observed no significant excess above background, leading to a lower 90% credibility limit on the half-life T-1/2 > 6.5 x 10(20) yr. We have also evaluated the sensitivity of the XENON1T experiment, which is currently being commissioned, and found a sensitivity of T-1/2 > 6.1 x 10(22) yr after an exposure of 2 t yr.
  •  
8.
  • Aprile, E., et al. (författare)
  • XENON100 dark matter results from a combination of 477 live days
  • 2016
  • Ingår i: Physical Review D. - 2470-0010 .- 2470-0029. ; 94:12
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on WIMP search results of the XENON100 experiment, combining three runs summing up to 477 live days from January 2010 to January 2014. Data from the first two runs were already published. A blind analysis was applied to the last run recorded between April 2013 and January 2014 prior to combining the results. The ultralow electromagnetic background of the experiment, similar to 5 x 10(-3) events/(keV(ee) x kg x day)) before electronic recoil rejection, together with the increased exposure of 48 kg x yr, improves the sensitivity. A profile likelihood analysis using an energy range of (6.6-43.3) keV(nr) sets a limit on the elastic, spin-independent WIMP-nucleon scattering cross section for WIMP masses above 8 GeV/c(2), with a minimum of 1.1 x 10(-45) cm(2) at 50 GeV/c(2) and 90% confidence level. We also report updated constraints on the elastic, spin-dependent WIMP-nucleon cross sections obtained with the same data. We set upper limits on the WIMP-neutron (proton) cross section with a minimum of 2.0 x 10(-40) cm(2) (52 x 10(-40) cm(2)) at a WIMP mass of 50 GeV/c(2), at 90% confidence level.
  •  
9.
  • Aalbers, J., et al. (författare)
  • DARWIN : towards the ultimate dark matter detector
  • 2016
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :11
  • Tidskriftsartikel (refereegranskat)abstract
    • DARk matter WImp search with liquid xenoN (DARWIN(2)) will be an experiment for the direct detection of dark matter using a multi-ton liquid xenon time projection chamber at its core. Its primary goal will be to explore the experimentally accessible parameter space for Weakly Interacting Massive Particles (WIMPs) in a wide mass-range, until neutrino interactions with the target become an irreducible background. The prompt scintillation light and the charge signals induced by particle interactions in the xenon will be observed by VUV sensitive, ultra-low background photosensors. Besides its excellent sensitivity to WIMPs above a mass of 5 GeV/c(2), such a detector with its large mass, low-energy threshold and ultra-low background level will also be sensitive to other rare interactions. It will search for solar axions,galactic axion-like particles and the neutrinoless double-beta decay of Xe-136, as well as measure the low-energy solar neutrino flux with <1% precision, observe coherent neutrino-nucleus interactions, and detect galactic supernovae. We present the concept of the DARWIN detector and discuss its physics reach, the main sources of backgrounds and the ongoing detector design and R&D efforts.
  •  
10.
  • Aprile, E., et al. (författare)
  • Energy resolution and linearity of XENON1T in the MeV energy range
  • 2020
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 80:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Xenon dual-phase time projection chambers designed to search for weakly interacting massive particles have so far shown a relative energy resolutionwhich degrades with energy above similar to 200 keV due to the saturation effects. This has limited their sensitivity in the search for rare events like the neutrinoless double-beta decay of Xe-136 at its Q value, Q(beta beta) similar or equal to 2.46 MeV. For the XENON1T dual-phase time projection chamber, we demonstrate that the relative energy resolution at 1 sigma/mu is as low as (0.80 +/- 0.02)% in its one-ton fiducial mass, and for single-site interactions at Q(beta beta). We also present a new signal correction method to rectify the saturation effects of the signal readout system, resulting in more accurate position reconstruction and indirectly improving the energy resolution. The very good result achieved in XENON1T opens up new windows for the xenon dual-phase dark matter detectors to simultaneously search for other rare events.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 52

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy