SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Defoort B) "

Sökning: WFRF:(Defoort B)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Almjashev, V.I., et al. (författare)
  • Eutectic crystallization in the FeO(1.5)-UO(2+x)-ZrO(2) system
  • 2009
  • Ingår i: Journal of Nuclear Materials. - : Elsevier BV. - 0022-3115 .- 1873-4820. ; 389:1, s. 52-56
  • Tidskriftsartikel (refereegranskat)abstract
    • Results of the investigation of the FeO(1.5)-UO(2+x)-ZrO(2) system in air are presented. The eutectic position and the content of the phases crystallized at this point have been determined. The temperature and the composition of the ternary eutectic are 1323 +/- 7 degrees C and 67.4 +/- 1.0 FeO(1.5), 30.5 +/- 1.0 UO(2+x), 2.1 +/- 0.2 ZrO(2) mol.%, respectively. The solubilities of FeO(1.5) and ZrO(2) in the UO(2+x)(FeO(1.5), ZrO(2)) solid solution correspond to respectively 3.2 and 1.1 mol.%. The solubilities of UO(2) and ZrO(2) in FeO(1.5) are not significant. The existence of a solid solution on the basis of U(Zr)FeO(4) compound is found. The ZrO(2) Solubility in this solid solution is 7.0 mol.%.
  •  
4.
  • Almjashev, V.I., et al. (författare)
  • Phase equilibria in the FeO(1+x)-UO(2)-ZrO(2) system in the FeO(1+x)-enriched domain
  • 2010
  • Ingår i: Journal of Nuclear Materials. - : Elsevier BV. - 0022-3115 .- 1873-4820. ; 400:2, s. 119-126
  • Tidskriftsartikel (refereegranskat)abstract
    • Experimental results of the investigation of the FeO(1+x)UO(2)-ZrO(2) system in neutral atmosphere are presented. The ternary eutectic position and the composition of the phases crystallized at this point have been determined. The phase diagram is constructed for the FeO(1+x)-enriched region and the onset melting temperature of 1310 degrees C probably represents a local minimum and so will be a determining factor in this system and its application to safety studies in nuclear reactors.
  •  
5.
  • Almjashev, V.I., et al. (författare)
  • Ternary eutectics in the systems FeO-UO2-ZrO2 and Fe2O3-U3O8-ZrO21
  • 2011
  • Ingår i: Radiochemistry. - 1066-3622. ; 53:1, s. 13-18
  • Tidskriftsartikel (refereegranskat)abstract
    • The systems FeO–UO2–ZrO2 (in inert atmosphere) and Fe2O3–U3O8–ZrO2 (in air) were studied. Forthe FeO–UO2–ZrO2 system, the eutectic temperature was found to be 1310°С, with the following componentconcentrations (mol %): 91.8 FeO, 3.8 UO2, and 4.4 ZrO2. For the Fe2O3–U3O8–ZrO2 system, the eutectictemperature was found to be 1323°С, with the following component concentrations (mol %): 67.4 FeO1.5,30.5 UO2.67, and 2.1 ZrO2. The solubility limits of iron oxides in the phases based on UO2(ZrO2,FeO) andUO2.67(ZrO2,FeO1.5) were determined
  •  
6.
  • Bechta, Sevostian, et al. (författare)
  • CORPHAD and METCOR ISTC projects
  • 2005
  • Ingår i: Proceedings of The first European Review Meeting on Severe Accident Research (ERMSAR-2005).
  • Konferensbidrag (refereegranskat)abstract
    • The ongoing CORPHAD Project (Phase Diagrams for Multicomponent SystemsContaining Corium and Products of its Interaction with NPP Materials) started in August2001. The main aim of the project is to experimentally determine the relevantphysicochemical data on phase diagrams of binary, ternary, quaternary and prototypic multicomponent systems, which are important for analysis and modelling of a severe accident (SA)and efficient planning of severe accident management (SAM) measures. The data should bedirectly used for the European NUCLEA database development and validation. The followingsystems are in the focus of the project: (1) UO2 – FeO, (2) ZrO2 – FeO, (3) SiO2– Fe2O3, (4)UO2 – SiO2, (5) UO2 – ZrO2-FeO, (6) UO2 – ZrO2-FeOy, (7) U-O-Fe, (8) Zr-O-Fe, (9) U-OZr, (10) U-Zr-Fe-O, (11) complex corium mixtures.The experimentally determined data of the listed diagrams include: coordinates ofcharacteristic points (eutectics, peritectics and others); liquidus and solidus concentrationcurves; component solubility limits in the solid phase; tie line coordinates and temperatureconcentration regions of the miscibility gap. Different methodologies are used for the phasediagram study. Classical methods of thermal analysis, like DTA and DSC are combined withmethods specifically developed for corium studies.The METCOR project (Investigation of Corium Melt Interaction with NPP ReactorVessel Steel) started in April 1999. The objectives of the project are to qualify and to quantifyphysico-chemical phenomena of corium melt interaction with reactor vessel steel cooled fromthe outside. The variable parameters of the interaction tests are: oxygen potential in thesystem, corium composition, interaction interface temperature and heat flux from corium tosteel. The medium scale tests with corium mass of about 2 kg are carried out by using highfrequency induction heating of the corium melt in a cold crucible.The METCOR & CORPHAD work-packages are performed by Russian partners inclose collaboration with leading European scientific institutes in the area of corium researchas well as with the European nuclear industry.This paper briefly describes the results obtained in both projects and their possibleapplication for SA analysis and SAM. The paper concludes with recommendations for futureresearch activities in the framework of METCOR and CORPHAD projects.
  •  
7.
  • Bechta, Sevostian, et al. (författare)
  • Phase diagram of the UO2-FeO1+x system
  • 2007
  • Ingår i: Journal of Nuclear Materials. - : Elsevier BV. - 0022-3115 .- 1873-4820. ; 362:1, s. 46-52
  • Tidskriftsartikel (refereegranskat)abstract
    • Phase-relation studies of the UO2–FeO1+x system in an inert atmosphere are presented. The eutectic point has beendetermined, which corresponds to a temperature of (1335 ± 5) C and a UO2 concentration of (4.0 ± 0.1) mol.%. Themaximum solubility of FeO in UO2 at the eutectic temperature has been estimated as (17.0 ± 1.0) mol.%. Liquidus temperaturesfor a wide concentration range have been determined and a phase diagram of the system has been constructed.
  •  
8.
  • Bechta, Sevostian, et al. (författare)
  • Phase diagram of the ZrO2-FeO system
  • 2006
  • Ingår i: Journal of Nuclear Materials. - : Elsevier BV. - 0022-3115 .- 1873-4820. ; 348:1-2, s. 114-121
  • Tidskriftsartikel (refereegranskat)abstract
    • The results on the ZrO2–FeO system studies in a neutral atmosphere are presented. The refined eutectic point has beenfound to correspond to a ZrO2 concentration of 10.3 ± 0.6 mol% at 1332 ± 5 C. The ultimate solubility of iron oxide inzirconia has been determined in a broad temperature range, taking into account the ZrO2 polymorphism. A phase diagramof the pseudobinary system in question has been constructed.
  •  
9.
  • Biollaz, S., et al. (författare)
  • Gas analysis in gasification of biomass and waste : Guideline report: Document 1
  • 2018
  • Rapport (refereegranskat)abstract
    • Gasification is generally acknowledged as one of the technologies that will enable the large-scale production of biofuels and chemicals from biomass and waste. One of the main technical challenges associated to the deployment of biomass gasification as a commercial technology is the cleaning and upgrading of the product gas. The contaminants of product gas from biomass/waste gasification include dust, tars, alkali metals, BTX, sulphur-, nitrogen- and chlorine compounds, and heavy metals. Proper measurement of the components and contaminants of the product gas is essential for the monitoring of gasification-based plants (efficiency, product quality, by-products), as well as for the proper design of the downstream gas cleaning train (for example, scrubbers, sorbents, etc.). In practice, a trade-off between reliability, accuracy and cost has to be reached when selecting the proper analysis technique for a specific application. The deployment and implementation of inexpensive yet accurate gas analysis techniques to monitor the fate of gas contaminants might play an important role in the commercialization of biomass and waste gasification processes.This special report commissioned by the IEA Bioenergy Task 33 group compiles a representative part of the extensive work developed in the last years by relevant actors in the field of gas analysis applied to(biomass and waste) gasification. The approach of this report has been based on the creation of a team of contributing partners who have supplied material to the report. This networking approach has been complemented with a literature review. The report is composed of a set of 2 documents. Document 1(the present report) describes the available analysis techniques (both commercial and underdevelopment) for the measurement of different compounds of interest present in gasification gas. The objective is to help the reader to properly select the analysis technique most suitable to the target compounds and the intended application. Document 1 also describes some examples of application of gas analysis at commercial-, pilot- and research gasification plants, as well as examples of recent and current joint research activities in the field. The information contained in Document 1 is complemented with a book of factsheets on gas analysis techniques in Document 2, and a collection of video blogs which illustrate some of the analysis techniques described in Documents 1 and 2.This guideline report would like to become a platform for the reinforcement of the network of partners working on the development and application of gas analysis, thus fostering collaboration and exchange of knowledge. As such, this report should become a living document which incorporates in future coming progress and developments in the field.
  •  
10.
  • Biollaz, S., et al. (författare)
  • Gas analysis in gasification of biomass and waste : Guideline report: Document 2 - Factsheets on gas analysis techniques
  • 2018
  • Rapport (refereegranskat)abstract
    • Gasification is generally acknowledged as one of the technologies that will enable the large-scale production of biofuels and chemicals from biomass and waste. One of the main technical challenges associated to the deployment of biomass gasification as a commercial technology is the cleaning and upgrading of the product gas. The contaminants of product gas from biomass/waste gasification include dust, tars, alkali metals, BTX, sulphur-, nitrogen- and chlorine compounds, and heavy metals. Proper measurement of the components and contaminants of the product gas is essential for the monitoring of gasification-based plants (efficiency, product quality, by-products), as well as for the proper design of the downstream gas cleaning train (for example, scrubbers, sorbents, etc.). The deployment and implementation of inexpensive yet accurate gas analysis techniques to monitor the fate of gas contaminants might play an important role in the commercialization of biomass and waste gasification processes.This special report commissioned by the IEA Bioenergy Task 33 group compiles a representative part of the extensive work developed in the last years by relevant actors in the field of gas analysis applied to (biomass and waste) gasification. The approach of this report has been based on the creation of a team of contributing partners who have supplied material to the report. This networking approach has been complemented with a literature review. This guideline report would like to become a platform for the reinforcement of the network of partners working on the development and application of gas analysis, thus fostering collaboration and exchange of knowledge. As such, this report should become a living document which incorporates in future coming progress and developments in the field.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy