SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Degiacomi Matteo T.) "

Sökning: WFRF:(Degiacomi Matteo T.)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hochberg, Georg K A, et al. (författare)
  • Structural principles that enable oligomeric small heat-shock protein paralogs to evolve distinct functions.
  • 2018
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 359:6378, s. 930-935
  • Tidskriftsartikel (refereegranskat)abstract
    • Oligomeric proteins assemble with exceptional selectivity, even in the presence of closely related proteins, to perform their cellular roles. We show that most proteins related by gene duplication of an oligomeric ancestor have evolved to avoid hetero-oligomerization and that this correlates with their acquisition of distinct functions. We report how coassembly is avoided by two oligomeric small heat-shock protein paralogs. A hierarchy of assembly, involving intermediates that are populated only fleetingly at equilibrium, ensures selective oligomerization. Conformational flexibility at noninterfacial regions in the monomers prevents coassembly, allowing interfaces to remain largely conserved. Homomeric oligomers must overcome the entropic benefit of coassembly and, accordingly, homomeric paralogs comprise fewer subunits than homomers that have no paralogs.
  •  
2.
  • Yen, Hsin-Yung, et al. (författare)
  • Electrospray ionization of native membrane proteins proceeds via a charge equilibration step
  • 2022
  • Ingår i: RSC Advances. - : Royal Society of Chemistry (RSC). - 2046-2069. ; 12:16, s. 9671-9680
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrospray ionization mass spectrometry is increasingly applied to study the structures and interactions of membrane protein complexes. However, the charging mechanism is complicated by the presence of detergent micelles during ionization. Here, we show that the final charge of membrane proteins can be predicted by their molecular weight when released from the non-charge reducing saccharide detergents. Our data indicate that PEG detergents lower the charge depending on the number of detergent molecules in the surrounding micelle, whereas fos-choline detergents may additionally participate in ion–ion reactions after desolvation. The supercharging reagent sulfolane, on the other hand, has no discernible effect on the charge of detergent-free membrane proteins. Taking our observations into the context of protein-detergent interactions in the gas phase, we propose a charge equilibration model for the generation of native-like membrane protein ions. During ionization of the protein-detergent complex, the ESI charges are distributed between detergent and protein according to proton affinity of the detergent, number of detergent molecules, and surface area of the protein. Charge equilibration influenced by detergents determines the final charge state of membrane proteins. This process likely contributes to maintaining a native-like fold after detergent release and can be harnessed to stabilize particularly labile membrane protein complexes in the gas phase.
  •  
3.
  • Allison, Timothy M., et al. (författare)
  • Complementing machine learning‐based structure predictions with native mass spectrometry
  • 2022
  • Ingår i: Protein Science. - : John Wiley & Sons. - 0961-8368 .- 1469-896X. ; 31:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The advent of machine learning-based structure prediction algorithms such as AlphaFold2 (AF2) and RoseTTa Fold have moved the generation of accurate structural models for the entire cellular protein machinery into the reach of the scientific community. However, structure predictions of protein complexes are based on user-provided input and may require experimental validation. Mass spectrometry (MS) is a versatile, time-effective tool that provides information on post-translational modifications, ligand interactions, conformational changes, and higher-order oligomerization. Using three protein systems, we show that native MS experiments can uncover structural features of ligand interactions, homology models, and point mutations that are undetectable by AF2 alone. We conclude that machine learning can be complemented with MS to yield more accurate structural models on a small and large scale.
  •  
4.
  • Allison, Timothy M., et al. (författare)
  • Computational Strategies and Challenges for Using Native Ion Mobility Mass Spectrometry in Biophysics and Structural Biology
  • 2020
  • Ingår i: Analytical Chemistry. - : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; 92:16, s. 10872-10880
  • Tidskriftsartikel (refereegranskat)abstract
    • Native mass spectrometry (MS) allows the interrogation of structural aspects of macromolecules in the gas phase, under the premise of having initially maintained their solution-phase noncovalent interactions intact. In the more than 25 years since the first reports, the utility of native MS has become well established in the structural biology community. The experimental and technological advances during this time have been rapid, resulting in dramatic increases in sensitivity, mass range, resolution, and complexity of possible experiments. As experimental methods have improved, there have been accompanying developments in computational approaches for analyzing and exploiting the profusion of MS data in a structural and biophysical context. In this perspective, we consider the computational strategies currently being employed by the community, aspects of best practice, and the challenges that remain to be addressed. Our perspective is based on discussions within the European Cooperation in Science and Technology Action on Native Mass Spectrometry and Related Methods for Structural Biology (EU COST Action BM1403), which involved participants from across Europe and North America. It is intended not as an in-depth review but instead to provide an accessible introduction to and overview of the topic—to inform newcomers to the field and stimulate discussions in the community about addressing existing challenges. Our complementary perspective (http://dx.doi.org/10.1021/acs.analchem.9b05792) focuses on software tools available to help researchers tackle some of the challenges enumerated here.
  •  
5.
  • Allison, Timothy M., et al. (författare)
  • Software Requirements for the Analysis and Interpretation of Native Ion Mobility Mass Spectrometry Data
  • 2020
  • Ingår i: Analytical Chemistry. - : American Chemical Society. - 0003-2700 .- 1520-6882. ; 92:16, s. 10881-10890
  • Tidskriftsartikel (refereegranskat)abstract
    • The past few years have seen a dramatic increase in applications of native mass and ion mobility spectrometry, especially for the study of proteins and protein complexes. This increase has been catalyzed by the availability of commercial instrumentation capable of carrying out such analyses. As in most fields, however, the software to process the data generated from new instrumentation lags behind. Recently, a number of research groups have started addressing this by developing software, but further improvements are still required in order to realize the full potential of the data sets generated. In this perspective, we describe practical aspects as well as challenges in processing native mass spectrometry (MS) and ion mobility-MS data sets and provide a brief overview of currently available tools. We then set out our vision of future developments that would bring the community together and lead to the development of a common platform to expedite future computational developments, provide standardized processing approaches, and serve as a location for the deposition of data for this emerging field. This perspective has been written by members of the European Cooperation in Science and Technology Action on Native MS and Related Methods for Structural Biology (EU COST Action BM1403) as an introduction to the software tools available in this area. It is intended to serve as an overview for newcomers and to stimulate discussions in the community on further developments in this field, rather than being an in-depth review. Our complementary perspective (http://dx.doi.org/10.1021/acs.analchem.9b05791) focuses on computational approaches used in this field.
  •  
6.
  • Landreh, Michael, et al. (författare)
  • Integrating mass spectrometry with MD simulations reveals the role of lipids in Na+/H+ antiporters
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Na+/H+ antiporters are found in all kingdoms of life and exhibit catalysis rates that are among the fastest of all known secondary-active transporters. Here we combine ion mobility mass spectrometry and molecular dynamics simulations to study the conformational stability and lipid-binding properties of the Na+/H+ exchanger NapA from Thermus thermophilus and compare this to the prototypical antiporter NhaA from Escherichia coli and the human homologue NHA2. We find that NapA and NHA2, but not NhaA, form stable dimers and do not selectively retain membrane lipids. By comparing wild-type NapA with engineered variants, we show that the unfolding of the protein in the gas phase involves the disruption of inter-domain contacts. Lipids around the domain interface protect the native fold in the gas phase by mediating contacts between the mobile protein segments. We speculate that elevator-type antiporters such as NapA, and likely NHA2, use a subset of annular lipids as structural support to facilitate large-scale conformational changes within the membrane.
  •  
7.
  • Landreh, Michael, et al. (författare)
  • Predicting the Shapes of Protein Complexes through Collision Cross Section Measurements and Database Searches
  • 2020
  • Ingår i: Analytical Chemistry. - : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; 92:18, s. 12297-12303
  • Tidskriftsartikel (refereegranskat)abstract
    • In structural biology, collision cross sections (CCSs) from ion mobility mass spectrometry (IM-MS) measurements are routinely compared to computationally or experimentally derived protein structures. Here, we investigate whether CCS data can inform about the shape of a protein in the absence of specific reference structures. Analysis of the proteins in the CCS database shows that protein complexes with low apparent densities are structurally more diverse than those with a high apparent density. Although assigning protein shapes purely on CCS data is not possible, we find that we can distinguish oblate- and prolate-shaped protein complexes by using the CCS, molecular weight, and oligomeric states to mine the Protein Data Bank (PDB) for potentially similar protein structures. Furthermore, comparing the CCS of a ferritin cage to the solution structures in the PDB reveals significant deviations caused by structural collapse in the gas phase. We then apply the strategy to an integral membrane protein by comparing the shapes of a prokaryotic and a eukaryotic sodium/proton antiporter homologue. We conclude that mining the PDB with IM-MS data is a time- effective way to derive low-resolution structural models.
  •  
8.
  • Marklund, Erik G., Teknologie doktor, 1979-, et al. (författare)
  • CCS for Modelling 3D Structures
  • 2021
  • Ingår i: Ion Mobility-Mass Spectrometry. - London : Royal Society of Chemistry. - 9781839162893 - 9781839162886 - 9781839161667 ; , s. 183-205
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Ion mobility spectrometry is a separation technique that also provides structural information about the analytes in the form of collision cross-sections (CCSs), which can be utilised for modelling. The dominant paradigm is to calculate theoretical CCSs for a range of candidate structure models and compare with experimentally derived CCS, thereby filtering out candidates not matching the experiment; however, new knowledge-based approaches are emerging. Herein, we give an overview of the concepts and the important considerations for CCS-based modelling, for analyte classes ranging from small molecules to large macromolecular complexes, and how the CCSs fit with other experimental data. Both the calculations and the experiments have specific uncertainties, and the experimental conditions might cause perturbations to the structure, complicating the interpretation. Generation of appropriate candidate structures stands out as a critical component determining the maximum accuracy of the modelling. Molecular dynamics simulations and other modelling tools can capitalise on system-specific information to explore the right parts of conformational space, while advancing our general understanding of how molecules are affected by the experiments can refine the candidate structures as well as connect CCS-based structures more closely with in vitro and in vivo chemistry and biology.
  •  
9.
  • Marklund, Erik G, et al. (författare)
  • Collision cross sections for structural proteomics.
  • 2015
  • Ingår i: Structure. - : Elsevier BV. - 0969-2126 .- 1878-4186. ; 23:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Ion mobility mass spectrometry (IM-MS) allows the structural interrogation of biomolecules by reporting their collision cross sections (CCSs). The major bottleneck for exploiting IM-MS in structural proteomics lies in the lack of speed at which structures and models can be related to experimental data. Here we present IMPACT (Ion Mobility Projection Approximation Calculation Tool), which overcomes these twin challenges, providing accurate CCSs up to 10(6) times faster than alternative methods. This allows us to assess the CCS space presented by the entire structural proteome, interrogate ensembles of protein conformers, and monitor molecular dynamics trajectories. Our data demonstrate that the CCS is a highly informative parameter and that IM-MS is of considerable practical value to structural biologists.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy