SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Deibel Carsten) "

Sökning: WFRF:(Deibel Carsten)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Felekidis, Nikolaos, 1985- (författare)
  • Effects of Energetic Disorder on the Optoelectronic Properties of Organic Solar Cells
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Organic photovoltaics (OPVs) is a promising low-cost and environmental-friendly technology currently achieving 12-14% power conversion efficiency. Despite the extensive focus of the research community over the last years, critical mechanisms defining the performance of OPVs are still topics of debate. While energetic disorder is known to be characteristic of organic semiconductors in general, its potential role in OPV has received surprisingly little attention. In this thesis we investigate some aspects of the relation between energetic disorder and several optoelectronic properties of OPV.Charge carrier mobility is a key parameter in characterizing the performance of organic semiconductors. Analyzing the temperature dependence of the mobility is also an oftenused method to obtain (estimates for) the energetic disorder in the HOMO and LUMO levels of an organic semiconductor material. Different formalisms to extract and analyze mobilities from space charge limited conductivity (SCLC) experiments are reviewed. Surprisingly, the Murgatroyd-Gill analytical model in combination with the Gaussian disorder model in the Boltzmann limit yields similar mobilities and energetic disorders as a more elaborate drift-diffusion model with parametrized mobility functionals. Common analysis and measurement errors are discussed. All the models are incorporated in an automated analysis freeware tool.The open circuit voltage (Voc) has attracted considerable interest as the large difference between Voc and the bandgap is the main loss mechanism in bulk heterojunction OPVs. Surprisingly, in ternary devices composed of two donors and one acceptor, the Voc is not pinned to the shallowest HOMO but demonstrates a continuous tunability between the binary extremities. We show that this phenomenon can be explained with an equilibrium model where Voc is defined as the splitting of the quasi-Fermi levels of the photo-created holes and electrons in a common density of states accounting for the stoichiometry, i.e. the ratio of the donor materials and the broadening by Gaussian disorder. Evaluating the PCE, it is found that ternary devices do not offer advantages over binary unless the fill factor (FF) is increased at intermediate compositions, as a result of improved transport/recombination upon material blending.Stressing the importance of material intermixing to improve the performance, we found that the presence of an acceptor may drastically alter the mobility and energetic disorder of the donor and vice versa. The effect of different acceptors was studied in a ternary onedonor- two-acceptors system, where the unpredictable variability with composition of the energetic disorder in the HOMO and the LUMO explained the almost linear tunability of Voc. Designing binary OPVs based on the design rule that the energetic disorder can be reduced upon material blending, as we observed, can yield a relative PCE improvement of at least 20%.CT states currently play a key role in evaluating the performance of OPVs and CTelectroluminescence (CT-EL) is assumed to stem from the recombination of thermalized electron-hole pairs. The varying width of the CT-EL peak for different material combinations is intuitively expected to reflect the energetic disorder of the effective HOMO and LUMO. We employ kinetic Monte Carlo (kMC) CT-EL simulations, using independently measured disorder parameters as input, to calculate the ground-to-ground state (0-0) transition spectrum. Including the vibronic broadening according to the Franck Condon principle, we reproduce the width and current dependence of the measured CT-EL peak for a large number of donor-acceptor combinations. The fitted dominant phonon modes compare well with the values measured using the spectral line narrowing technique. Importantly, the calculations show that CT-EL originates from a narrow, non-thermalized subset of all available CT states, which can be understood by considering the kinetic microscopic process with which electron-hole pairs meet and recombine.Despite electron-hole pairs being strongly bound in organic materials, the charge separation process following photo-excitation is found to be extremely efficient and independent of the excitation energy. However, at low photon energies where the charges are excited deep in the tail of the DOS, it is intuitively expected for the extraction yield to be quenched. Internal Quantum Efficiency (IQE) experiments for different material systems show both inefficient and efficient charge dissociation for excitation close to the CT energy. This finding is explained by kinetic Monte Carlo simulations accounting for a varying degree of e-h delocalization, where strongly bound localized CT pairs (< 2nm distance) are doomed to recombine at low excitation energies while extended delocalization over 3-5nm yields an increased and energy-independent IQE. Using a single material parameter set, the experimental CT electroluminescence and absorption spectra are reproduced by the same kMC model by accounting for the vibronic progression of the calculated 0-0 transition. In contrast to CT-EL, CT-absorption probes the complete CT manifold.Charge transport in organic solar cells is currently modelled as either an equilibrium or a non-equilibrium process. The former is described by drift-diffusion (DD) equations, which can be calculated quickly but assume local thermal equilibrium of the charge carriers with the lattice. The latter is described by kMC models, that are time-consuming but treat the charge carriers individually and can probe all relevant time and energy scales. A hybrid model that makes use of the multiple trap and release (MTR) concept in combination with the DD equations is shown to describe both steady-state space charge limited conductivity experiments and non-equilibrium time-resolved transport experiments using a single parameter set. For the investigated simulations, the DD-MTR model is in good agreement with kMC and ~10 times faster.Steady-state mobilities from DD equations have been argued to be exclusively relevant for operating OPVs while charge carrier thermalization and non-equilibrium time-dependent mobilities (although acknowledged) can be disregarded. This conclusion, based on transient photocurrent experiments with μs time resolution, is not complete. We show that non-equilibrium kMC simulations can describe the extraction of charge carriers from subps to 100 μs timescales with a single parameter set. The majority of the fast charge carriers, mostly non-thermalized electrons, are extracted at time scales below the resolution of the experiment. In other words, the experiment resolves only the slower fraction of the charges, predominantly holes.
  •  
2.
  • Karlsson, Max, et al. (författare)
  • Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Bright and efficient blue emission is key to further development of metal halide perovskite light-emitting diodes. Although modifying bromide/chloride composition is straightforward to achieve blue emission, practical implementation of this strategy has been challenging due to poor colour stability and severe photoluminescence quenching. Both detrimental effects become increasingly prominent in perovskites with the high chloride content needed to produce blue emission. Here, we solve these critical challenges in mixed halide perovskites and demonstrate spectrally stable blue perovskite light-emitting diodes over a wide range of emission wavelengths from 490 to 451 nanometres. The emission colour is directly tuned by modifying the halide composition. Particularly, our blue and deep-blue light-emitting diodes based on three-dimensional perovskites show high EQE values of 11.0% and 5.5% with emission peaks at 477 and 467 nm, respectively. These achievements are enabled by a vapour-assisted crystallization technique, which largely mitigates local compositional heterogeneity and ion migration.
  •  
3.
  • Luo, Xiyu, et al. (författare)
  • Effects of local compositional heterogeneity in mixed halide perovskites on blue electroluminescence
  • 2024
  • Ingår i: Matter. - 2590-2393. ; 7:3, s. 1054-1070
  • Tidskriftsartikel (refereegranskat)abstract
    • Compositional heterogeneity is commonly observed in mixed bromide/iodide perovskite photoabsorbers, typically with minimal effects on charge carrier recombination and photovoltaic performance. Consistently, it has so far received very limited attention in bromide/chloride-mixed perovskites, which hold particular significance for blue light-emitting diodes. Here, we uncover that even a minor degree of localized halide heterogeneity leads to severe non-radiative losses in mixed bromide/chloride blue perovskite emitters, presenting a stark contrast to general observations in photovoltaics. We not only provide a visualization of the heterogeneity landscape spanning from micro-to sub-microscale but also identify that this issue mainly arises from the initially formed chloride-rich clusters during perovskite nucleation. Our work sheds light on a long-term neglected factor impeding the advancement of blue light-emitting diodes using mixed halide perovskites and provides a practical strategy to mitigate this issue.
  •  
4.
  • Teng, Pengpeng, et al. (författare)
  • Degradation and self-repairing in perovskite light-emitting diodes
  • 2021
  • Ingår i: Matter. - : Elsevier. - 2590-2393 .- 2590-2385. ; 4:11, s. 3710-3724
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the most critical challenges in perovskite light-emitting diodes (PeLEDs) lies in poor operational stability. Although field dependent ion migration is believed to play an important role in the operation of perovskite optoelectronic devices, a complete understanding of how it affects the stability of PeLEDs is still missing. Here, we report a unique self-repairing behavior that the electroluminescence of moderately degraded PeLEDs can almost completely restore to their initial performance after resting. We find that the accumulated halides within the hole transport layer undergo back diffusion toward the surface of the perovskite layer during resting, repairing the vacancies and thus resulting in electroluminescence recovery. These findings indicate that one of the dominant degradation pathways in PeLEDs is the generation of halide vacancies at perovskite/hole transport layer interface during operation. We thus further passivate this key interface, which results in a high external quantum efficiency of 22.8% and obviously improved operational stability.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy