SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Deinert Jan Christoph) "

Sökning: WFRF:(Deinert Jan Christoph)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Neeraj, Kumar, et al. (författare)
  • Inertial spin dynamics in ferromagnets
  • 2021
  • Ingår i: Nature Physics. - : Springer Science and Business Media LLC. - 1745-2473 .- 1745-2481. ; 17, s. 245-250
  • Tidskriftsartikel (refereegranskat)abstract
    • The understanding of how spins move and can be manipulated at pico- and femtosecond timescales has implications for ultrafast and energy-efficient data-processing and storage applications. However, the possibility of realizing commercial technologies based on ultrafast spin dynamics has been hampered by our limited knowledge of the physics behind processes on this timescale. Recently, it has been suggested that inertial effects should be considered in the full description of the spin dynamics at these ultrafast timescales, but a clear observation of such effects in ferromagnets is still lacking. Here, we report direct experimental evidence of intrinsic inertial spin dynamics in ferromagnetic thin films in the form of a nutation of the magnetization at a frequency of ~0.5 THz. This allows us to reveal that the angular momentum relaxation time in ferromagnets is on the order of 10 ps.
  •  
2.
  • Salikhov, Ruslan, et al. (författare)
  • Coupling of terahertz light with nanometre-wavelength magnon modes via spin-orbit torque
  • 2023
  • Ingår i: Nature Physics. - : Springer Science and Business Media LLC. - 1745-2473 .- 1745-2481. ; 19:4, s. 529-535
  • Tidskriftsartikel (refereegranskat)abstract
    • Spin-based technologies can operate at terahertz frequencies but require manipulation techniques that work at ultrafast timescales to become practical. For instance, devices based on spin waves, also known as magnons, require efficient generation of high-energy exchange spin waves at nanometre wavelengths. To achieve this, a substantial coupling is needed between the magnon modes and an electro-magnetic stimulus such as a coherent terahertz field pulse. However, it has been difficult to excite non-uniform spin waves efficiently using terahertz light because of the large momentum mismatch between the submillimetre-wave radiation and the nanometre-sized spin waves. Here we improve the light–matter interaction by engineering thin films to exploit relativistic spin–orbit torques that are confined to the interfaces of heavy metal/ferromagnet heterostructures. We are able to excite spin-wave modes with frequencies of up to 0.6 THz and wavelengths as short as 6 nm using broadband terahertz radiation. Numerical simulations demonstrate that the coupling of terahertz light to exchange-dominated magnons originates solely from interfacial spin–orbit torques. Our results are of general applicability to other magnetic multilayered structures, and offer the prospect of nanoscale control of high-frequency signals.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy