SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dekker Nitert Marloes) "

Sökning: WFRF:(Dekker Nitert Marloes)

  • Resultat 1-10 av 36
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abels, Mia, et al. (författare)
  • CART is overexpressed in human type 2 diabetic islets and inhibits glucagon secretion and increases insulin secretion
  • 2016
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 59:9, s. 1928-1937
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis Insufficient insulin release and hyperglucagonaemia are culprits in type 2 diabetes. Cocaine- and amphetamine-regulated transcript (CART, encoded by Cartpt) affects islet hormone secretion and beta cell survival in vitro in rats, and Cart(-/-) mice have diminished insulin secretion. We aimed to test if CART is differentially regulated in human type 2 diabetic islets and if CART affects insulin and glucagon secretion in vitro in humans and in vivo in mice. Methods CART expression was assessed in human type 2 diabetic and non-diabetic control pancreases and rodent models of diabetes. Insulin and glucagon secretion was examined in isolated islets and in vivo in mice. Ca2+ oscillation patterns and exocytosis were studied in mouse islets. Results We report an important role of CART in human islet function and glucose homeostasis in mice. CART was found to be expressed in human alpha and beta cells and in a subpopulation of mouse beta cells. Notably, CART expression was several fold higher in islets of type 2 diabetic humans and rodents. CART increased insulin secretion in vivo in mice and in human and mouse islets. Furthermore, CART increased beta cell exocytosis, altered the glucose-induced Ca2+ signalling pattern in mouse islets from fast to slow oscillations and improved synchronisation of the oscillations between different islet regions. Finally, CART reduced glucagon secretion in human and mouse islets, as well as in vivo in mice via diminished alpha cell exocytosis. Conclusions/interpretation We conclude that CART is a regulator of glucose homeostasis and could play an important role in the pathophysiology of type 2 diabetes. Based on the ability of CART to increase insulin secretion and reduce glucagon secretion, CART-based agents could be a therapeutic modality in type 2 diabetes.
  •  
2.
  • Bennet, Hedvig, et al. (författare)
  • Altered serotonin (5-HT) 1D and 2A receptor expression may contribute to defective insulin and glucagon secretion in human type 2 diabetes.
  • 2015
  • Ingår i: Peptides. - : Elsevier BV. - 1873-5169 .- 0196-9781. ; 71, s. 113-120
  • Tidskriftsartikel (refereegranskat)abstract
    • Islet produced 5-hydroxy tryptamine (5-HT) is suggested to regulate islet hormone secretion in a paracrine and autocrine manner in rodents. Hitherto, no studies demonstrate a role for this amine in human islet function, nor is it known if 5-HT signaling is involved in the development of beta cell dysfunction in type 2 diabetes (T2D). To clarify this, we performed a complete transcriptional mapping of 5-HT receptors and processing enzymes in human islets and investigated differential expression of these genes in non-diabetic and T2D human islet donors. We show the expression of fourteen 5-HT receptors as well as processing enzymes involved in the biosynthesis of 5-HT at the mRNA level in human islets. Two 5-HT receptors (HTR1D and HTR2A) were over-expressed in T2D islet donors. Both receptors (5-HT1d and 5-HT2a) were localized to human alpha, beta and delta cells. 5-HT inhibited both insulin and glucagon secretion in non-diabetic islet donors. In islets isolated from T2D donors the amine significantly increased release of insulin in response to glucose. Our results suggest that 5-HT signaling participates in regulation of overall islet hormone secretion in non- diabetic individuals and over-expression of HTR1D and HTR2A may either contribute to islet dysfunction in T2D or arise as a consequence of an already dysfunctional islet.
  •  
3.
  • Bennet, Hedvig, et al. (författare)
  • Serotonin (5-HT) receptor 2b activation augments glucose-stimulated insulin secretion in human and mouse islets of Langerhans.
  • 2016
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 59:4, s. 744-754
  • Tidskriftsartikel (refereegranskat)abstract
    • The Gq-coupled 5-hydroxytryptamine 2B (5-HT2B) receptor is known to regulate the proliferation of islet beta cells during pregnancy. However, the role of serotonin in the control of insulin release is still controversial. The aim of the present study was to explore the role of the 5-HT2B receptor in the regulation of insulin secretion in mouse and human islets, as well as in clonal INS-1(832/13) cells.
  •  
4.
  •  
5.
  • Chisalita, Simona I., 1972-, et al. (författare)
  • Characterisation of receptors for IGF-I and insulin; evidence for hybrid insulin/IGF-I receptor in human coronary artery endothelial cells
  • 2006
  • Ingår i: Growth Hormone & Igf Research. - : Elsevier BV. - 1532-2238 .- 1096-6374. ; 16:4, s. 258-266
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Coronary artery disease is a prevalent cause of morbidity and mortality in diabetes. Little is known about insulin-like growth factor-I receptors (IGF-IR) and insulin receptors (IR) in human coronary endothelium. Our aim was to characterize IGF-IR and IR in human coronary artery endothelial cells (HCAEC). DESIGN: Cultured human coronary artery endothelial cells were used. Gene expression was measured by quantitative real-time RT-PCR analysis and receptor affinity by ligand binding. Receptor protein, phosphorylation of IGF-IR and IR beta-subunit as well as the presence of hybrid insulin receptor/Insulin-like growth factor-I receptor (Hybrid IR/IGF-IR) was analyzed by immunoprecipitation and Western blot. Postreceptor effects of insulin and IGF-I were assed by (3)H-thymidine incorporation. RESULTS: The gene expression of IGF-IR was several folds higher than that of IR. and insulin receptor isoform A (IR-A) was 20-fold more expressed than insulin receptor isoform B (IR-B) in HCAEC. The specific binding of (125)I-IGF-I was higher than that of (125)I-insulin. Insulin and the new long acting insulin analog, glargine, interacted with the IGF-IR with over thousand and 100-fold less potency than IGF-I itself, whereas IGF-II had 6 times lower potency than IGF-I. Phosphorylation of the IGF-IR beta-subunit was obtained by concentrations of 10(-10)-10(-8)M IGF-I, 10(-6)M of insulin, inconsistently by 10(-8)M insulin and not at all by 10(-10)-10(-9)M insulin. The IR beta-subunit was phosphorylated by insulin and IGF-I at concentrations of 10(-9)-10(-8)M. When immunoprecipitating with specific monoclonal anti-IR or anti-IGF-IR alpha-subunit antibodies we found bands situated in slightly different positions suggesting the presence of Hybrid IR/IGF-IR. IGF-I, IGF-II and insulin (10(-9)-10(-7)M) had no significant effect on (3)H-thymidine incorporation into DNA. CONCLUSIONS: Human coronary endothelial cells express more IGF-IR than IR, mainly IR-A, and also Hybrid IR/IGF-IR. Both IGF-I and insulin phosphorylate their receptors, but only IGF-I seems to phosphorylate Hybrid IR/IGF-IR. Our study provides experimental evidence for a possible role of IGF-IR, IR and Hybrid IR/IGF-IR in human coronary artery endothelial cells.
  •  
6.
  • Dekker Nitert, Marloes, et al. (författare)
  • CaV1.2 rather than CaV1.3 is coupled to glucose-stimulated insulin secretion in INS-1 832/13 cells.
  • 2008
  • Ingår i: Journal of Molecular Endocrinology. - 1479-6813. ; 41:1, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • In clonal beta-cell lines and islets from different species, a variety of calcium channels are coupled to glucose-stimulated insulin secretion. The aim of this study was to identify the voltage-gated calcium channels that control insulin secretion in insulinoma (INS)-1 832/13 cells. The mRNA level of Ca(V)1.2 exceeded that of Ca(V)1.3 and Ca(V)2.3 two-fold. Insulin secretion, which rose tenfold in response to 16.7 mM glucose, was completely abolished by 5 microM isradipine that blocks Ca(V)1.2 and Ca(V)1.3. Similarly, the increase in intracellular calcium in response to 15 mM glucose was decreased in the presence of 5 microM isradipine, and the frequency of calcium spikes was decreased to the level seen at 2.8 mM glucose. By contrast, inhibition of Ca(V)2.3 with 100 nM SNX-482 did not significantly affect insulin secretion or intracellular calcium. Using RNA interference, Ca(V)1.2 mRNA and protein levels were knocked down by approximately 65% and approximately 34% respectively, which reduced insulin secretion in response to 16.7 mM glucose by 50%. Similar reductions in calcium currents and cell capacitance were seen in standard whole-cell patch-clamp experiments. The remaining secretion of insulin could be reduced to the basal level by 5 microM isradipine. Calcium influx underlying this residual insulin secretion could result from persisting Ca(V)1.2 expression in transfected cells since knock-down of Ca(V)1.3 did not affect glucose-stimulated insulin secretion. In summary, our results suggest that Ca(V)1.2 is critical for insulin secretion in INS-1 832/13 cells.
  •  
7.
  • Dekker Nitert, Marloes (författare)
  • From the pancreatic beta cell to the endothelium:Pathophysiological aspects of Type 2 Diabetes
  • 2007
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The incidence of Diabetes Mellitus increases globally in epidemic proportions. Type 2 Diabetes is the most prevalent form of Diabetes, comprising 90% of the patients. In Type 2 Diabetes, two processes contribute to the development of the disease: insufficient insulin secretion from the pancreatic ?-cell and insulin resistance of the target organs. This leads to loss of control of blood glucose levels, which characterize Diabetes. Even while blood glucose levels can be controlled by a variety of life-style and pharmacological interventions, complications often arise. These complications include cardiovascular disease, retinopathy, neuropathy, and nephropathy. In this thesis, different aspects of pathophysiological mechanisms in Type 2 Diabetes were studied. The aims were (i) to identify the voltage-gated calcium channel that is coupled to glucose-stimulated insulin secretion in the rat clonal ?-cell line INS-1 832/13; (ii) to investigate the mechanism of ?-cell adaptation in the C57BL/6J mouse model of insulin resistance; (iii) to determine whether spontaneous glucose tolerance was a feature in the RIP2-Cre mouse model which is often used for ?-cell specific knockout of genes; and (iv) to study the presence of insulin receptors and IGF-I receptors in human endothelial cells of different origin. It was established that CaV1.2 was the main voltage-gated calcium channel coupled to glucose-stimulated insulin secretion in INS-1 832/13 cells, confirming previous results obtained from mouse ?-cells. C57BL/6J mice on a high-fat diet become insulin resistant but do not develop Diabetes. The hypersecretion of insulin from the ?-cells of these animals is due to a shift in metabolic fuels from glucose to fatty acids and amino acids. The ?-cells of these mice have a high fat content that might interfere with the function of glucose transporters. Furthermore, an increase in mitochondrial mass was observed in the ?-cells of insulin-resistant C57BL/6J mice. All these alterations are part of the ?-cell adaptation, which enables the mice to secrete sufficient insulin in order to prevent the development of overt Diabetes. C57BL/6J mice were also used to backcross RIP2-Cre mice onto. Absence of the recently reported five-exon deletion in the nnt gene in the C57BL/6J mice used, contributed to normal glucose tolerance in both mice strains studied. The expression of Cre recombinase did not affect glucose tolerance and this mouse strain on this background can be used in ?-cell specific knockout studies. Human endothelial cells from coronary artery and umbilical vein expressed more IGF-I receptors than insulin receptors. Indications for the presence of insulin/IGF-I hybrid receptors were found in both endothelial cell types. These results reflect the importance of IGF-I in the development of vascular complications of Diabetes Mellitus.
  •  
8.
  • Dekker Nitert, Marloes, et al. (författare)
  • IGF-I/insulin hybrid receptors in human endothelial cells
  • 2005
  • Ingår i: Molecular and Cellular Endocrinology. - : Elsevier BV. - 1872-8057 .- 0303-7207. ; 229:1-2, s. 31-37
  • Tidskriftsartikel (refereegranskat)abstract
    • Vascular complications are common in diabetes. IGF-I receptors (IGF-IR) and insulin receptors (IR) in endothelial cells might respond to altered levels of IGF-I and insulin, resulting in altered endothelial function in diabetes. We therefore studied IGF-IR and IR gene expression, ligand binding, receptor protein, and phosphorylation in human umbilical vein endothelial cells (HUVEC). IGF-IR mRNA was more abundant than IR mRNA in freshly isolated HUVEC (IGF-IR/IR ratio 7.1 +/- 1.5) and in cultured HUVEC (ratio 3.5 +/- 0.51). Accordingly, specific binding of (125)I-IGF-I (0.64 +/- 0.25%) was higher than that of (125)I-insulin (0.25 +/- 0.09%). Protein was detected for both receptors and IGF-I/insulin hybrid receptors. IGF-IR phosphorylation was stimulated by 10(-10) to 10(-8) M IGF-I. IR were activated by 10(-9) to 10(-8) M insulin and IGF-I. We conclude that HUVEC express more IGF-IR than IR, and also express hybrid receptors. Both IGF-I and insulin phosphorylate their own receptors but only IGF-I seems to phosphorylate hybrid receptors.
  •  
9.
  • Dekker Nitert, Marloes, 1976- (författare)
  • IGF-I receptors, insulin receptors and insulin/IGF-I hybrid receptors in human endothelial cells : with special reference to diabetes
  • 2005
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Patients with diabetes mellitus are known to develop vascular complications, which occur as macroangiopathy, atherosclerosis and mediasclerosis, as well as microangiopathy, e.g. retinopathy and nephropathy. The precise mechanisms causing these complications have not yet been elucidated. The microvascular complications are closely associated with the glycaemic control, which also is a risk factor for the diabetic macroangiopathy. The possible roles of insulin and the related peptide IGF-I, whose levels are affected by diabetes mellitus, are not clear. This study aims to characterise the presence and function of insulin and IGF-I receptors in human endothelial cells.Two types of human endothelial cells were studied; human umbilical vein endothelial cells (HUVEC) and human coronary artery endothelial cells (HCAEC). The presence of insulin receptors and IGF-I receptors was studied at mRNA level by real-time PCR and at protein level by ligand binding and by Western blot analysis after immunoprecipitation. Receptor activation was determined as tyrosine phosphorylation.Both HUVEC and HCAEC were found to express IGF-I receptors and insulin receptors at mRNA and protein levels. The amount of IGF-I receptor mRNA exceeded insulin receptor mRNA by 3.5 and 14-fold in HUVEC and HCAEC, respectively. In HUVEC, the higher expression of IGF-I receptor mRNA compared to insulin receptor mRNA was present in both freshly isolated and cultured cells. Ligand binding studies showed a higher specific binding of 125I-IGF-I than of 125I-insulin which also suggest the presence of more IGF-I receptors than insulin receptors. In HUVEC, the specific binding was 0.64 ± 0.25% (mean ± SEM) for 125I-IGF-I and 0.25 ± 0.092% for 125I-insulin. The EC50 for 125I-IGF-I displacement was 3.6 x 10-10 M for IGF-I vs. 8.25 x 10-8 M for insulin. The EC50 for 125I-insulin displacement was 2.6 x 10-10 M for insulin and 7.39 x 10-9 M for IGF-I. In HCAEC, the specific binding was 1.37 ± 0.09% and for insulin 0.17 ± 0.03%. The EC50 value for IGF-I displacement were 6.9 X 10-10 M for IGF-I, 8.7 X 10-6 M for insulin and 7.5 X 10-8 M for the insulin analogue glargine. Due to the very low specific binding of 125I-insulin, it was not possible to calculate the concentration needed to give half-maximal displacement, EC50, of 125I-labelled insulin. Both cell types expressed insulin/IGF-I hybrid receptors. Receptor phosphorylation studies showed that IGF-I receptor could be activated by 10-10 to 10-8 M IGF-I in both cell types. Insulin receptors were activated by 10-9 to 10-8 M insulin in HUVEC and HCAEC. IGF-I was able to activate insulin receptor phosphorylation at low concentrations, 10-9 to 10-8 M, which also is an indication of the presence of hybrid receptors.In conclusion, two types of human endothelial cells, HUVEC and HCAEC, express more IGF-I receptors than insulin receptors, and they also express insulin/IGF-I hybrid receptors. IGF-I and insulin were found to phosphorylate their own receptor while IGF-I also seemed to be able to phosphorylate hybrid receptors. The results suggest an important role of the IGF-I receptor in human endothelial cells.
  •  
10.
  • Dekker Nitert, Marloes, et al. (författare)
  • Impact of an Exercise Intervention on DNA Methylation in Skeletal Muscle From First-Degree Relatives of Patients With Type 2 Diabetes.
  • 2012
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797.
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify epigenetic patterns, which may predispose to type 2 diabetes (T2D) due to a family history (FH) of the disease, we analyzed DNA methylation genome-wide in skeletal muscle from individuals with (FH(+)) or without (FH(-)) an FH of T2D. We found differential DNA methylation of genes in biological pathways including mitogen-activated protein kinase (MAPK), insulin, and calcium signaling (P ≤ 0.007) and of individual genes with known function in muscle, including MAPK1, MYO18B, HOXC6, and the AMP-activated protein kinase subunit PRKAB1 in skeletal muscle of FH(+) compared with FH(-) men. We further validated our findings from FH(+) men in monozygotic twin pairs discordant for T2D, and 40% of 65 analyzed genes exhibited differential DNA methylation in muscle of both FH(+) men and diabetic twins. We further examined if a 6-month exercise intervention modifies the genome-wide DNA methylation pattern in skeletal muscle of the FH(+) and FH(-) individuals. DNA methylation of genes in retinol metabolism and calcium signaling pathways (P < 3 × 10(-6)) and with known functions in muscle and T2D including MEF2A, RUNX1, NDUFC2, and THADA decreased after exercise. Methylation of these human promoter regions suppressed reporter gene expression in vitro. In addition, both expression and methylation of several genes, i.e., ADIPOR1, BDKRB2, and TRIB1, changed after exercise. These findings provide new insights into how genetic background and environment can alter the human epigenome.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 36

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy