SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Delapp D.) "

Sökning: WFRF:(Delapp D.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cousin, A., et al. (författare)
  • Compositions of coarse and fine particles in martian soils at gale: A window into the production of soils
  • 2015
  • Ingår i: Icarus. - : Elsevier BV. - 0019-1035 .- 1090-2643. ; 249, s. 22-42
  • Tidskriftsartikel (refereegranskat)abstract
    • The ChemCam instrument onboard the Curiosity rover provides for the first time an opportunity to study martian soils at a sub-millimeter resolution. In this work, we analyzed 24 soil targets probed by ChemCam during the first 250 sols on Mars. Using the depth profile capability of the ChemCam LIBS (Laser-Induced Breakdown Spectroscopy) technique, we found that 45% of the soils contained coarse grains (>500 μm). Three distinct clusters have been detected: Cluster 1 shows a low SiO2 content; Cluster 2 corresponds to coarse grains with a felsic composition, whereas Cluster 3 presents a typical basaltic composition. Coarse grains from Cluster 2 have been mostly observed exposed in the vicinity of the landing site, whereas coarse grains from Clusters 1 and 3 have been detected mostly buried, and were found all along the rover traverse. The possible origin of these coarse grains was investigated. Felsic (Cluster 2) coarse grains have the same origin as the felsic rocks encountered near the landing site, whereas the origin of the coarse grains from Clusters 1 and 3 seems to be more global. Fine-grained soils (particle size < laser beam diameter which is between 300 and 500 μm) show a homogeneous composition all along the traverse, different from the composition of the rocks encountered at Gale. Although they contain a certain amount of hydrated amorphous component depleted in SiO2, possibly present as a surface coating, their overall chemical homogeneity and their close-to-basaltic composition suggest limited, or isochemical alteration, and a limited interaction with liquid water. Fine particles and coarse grains from Cluster 1 have a similar composition, and the former could derive from weathering of the latter. Overall martian soils have a bulk composition between that of fine particles and coarse grains. This work shows that the ChemCam instrument provides a means to study the variability of soil composition at a scale not achievable by bulk chemical analyses.
  •  
2.
  • Melikechi, N., et al. (författare)
  • Correcting for variable laser-target distances of laser-induced breakdown spectroscopy measurements with ChemCam using emission lines of Martian dust spectra
  • 2014
  • Ingår i: Spectrochimica Acta Part B - Atomic Spectroscopy. - : Elsevier BV. - 0584-8547 .- 1873-3565. ; 96, s. 51-60
  • Tidskriftsartikel (refereegranskat)abstract
    • As part of the Mars Science Laboratory, the ChemCam instrument acquires remote laser induced breakdown spectra at distances that vary between 1.56 m and 7 m. This variation in distance affects the intensities of the measured LIBS emission lines in non-trivial ways. To determine the behavior of a LIBS emission line with distance, it is necessary to separate the effects of many parameters such as laser energy, laser spot size, target homogeneity, and optical collection efficiency. These parameters may be controlled in a laboratory on Earth but for field applications or in space this is a challenge. In this paper, we show that carefully selected ChemCam LIBS emission lines acquired from the Martian dust can be used to build an internal proxy spectroscopic standard. This in turn, allows for a direct measurement of the effects of the distance of various LIBS emission lines and hence can be used to correct ChemCam LIBS spectra for distance variations. When tested on pre-launch LIBS calibration data acquired under Martian-like conditions and with controlled and well-calibrated targets, this approach yields much improved agreement between targets observed at various distances. This work lays the foundation for future implementation of automated routines to correct ChemCam spectra for differences caused by variable distance.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy