SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Delcey Mickael G 1988 ) "

Sökning: WFRF:(Delcey Mickael G 1988 )

  • Resultat 1-10 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Galván, Ignacio Fdez., et al. (författare)
  • OpenMolcas : From Source Code to Insight
  • 2019
  • Ingår i: Journal of Chemical Theory and Computation. - : American Chemical Society (ACS). - 1549-9618 .- 1549-9626. ; 15:11, s. 5925-5964
  • Tidskriftsartikel (refereegranskat)abstract
    • In this Article we describe the OpenMolcas environment and invite the computational chemistry community to collaborate. The open-source project already includes a large number of new developments realized during the transition from the commercial MOLCAS product to the open-source platform. The paper initially describes the technical details of the new software development platform. This is followed by brief presentations of many new methods, implementations, and features of the OpenMolcas program suite. These developments include novel wave function methods such as stochastic complete active space self-consistent field, density matrix renormalization group (DMRG) methods, and hybrid multiconfigurational wave function and density functional theory models. Some of these implementations include an array of additional options and functionalities. The paper proceeds and describes developments related to explorations of potential energy surfaces. Here we present methods for the optimization of conical intersections, the simulation of adiabatic and nonadiabatic molecular dynamics, and interfaces to tools for semiclassical and quantum mechanical nuclear dynamics. Furthermore, the Article describes features unique to simulations of spectroscopic and magnetic phenomena such as the exact semiclassical description of the interaction between light and matter, various X-ray processes, magnetic circular dichroism, and properties. Finally, the paper describes a number of built-in and add-on features to support the OpenMolcas platform with postcalculation analysis and visualization, a multiscale simulation option using frozen-density embedding theory, and new electronic and muonic basis sets.
  •  
2.
  • Manni, Giovanni Li, et al. (författare)
  • The OpenMolcas Web : A Community-Driven Approach to Advancing Computational Chemistry
  • 2023
  • Ingår i: Journal of Chemical Theory and Computation. - : American Chemical Society (ACS). - 1549-9618 .- 1549-9626. ; 19:20, s. 6933-6991
  • Tidskriftsartikel (refereegranskat)abstract
    • The developments of the open-source OpenMolcas chemistry software environment since spring 2020 are described, with a focus on novel functionalities accessible in the stable branch of the package or via interfaces with other packages. These developments span a wide range of topics in computational chemistry and are presented in thematic sections: electronic structure theory, electronic spectroscopy simulations, analytic gradients and molecular structure optimizations, ab initio molecular dynamics, and other new features. This report offers an overview of the chemical phenomena and processes OpenMolcas can address, while showing that OpenMolcas is an attractive platform for state-of-the-art atomistic computer simulations.
  •  
3.
  • Blachucki, Wojciech, et al. (författare)
  • Approaching the Attosecond Frontier of Dynamics in Matter with the Concept of X-ray Chronoscopy
  • 2022
  • Ingår i: Applied Sciences. - : MDPI AG. - 2076-3417. ; 12:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Featured Application Herein, an innovative methodology, called X-ray chronoscopy, is proposed for exploration of ultrafast processes in matter with attosecond precision using current XFEL sources. The method is based on measuring the change in an X-ray pulse temporal profile induced by interaction with a medium. X-ray free electron lasers (XFELs) have provided scientists opportunities to study matter with unprecedented temporal and spatial resolutions. However, access to the attosecond domain (i.e., below 1 femtosecond) remains elusive. Herein, a time-dependent experimental concept is theorized, allowing us to track ultrafast processes in matter with sub-fs resolution. The proposed X-ray chronoscopy approach exploits the state-of-the-art developments in terahertz streaking to measure the time structure of X-ray pulses with ultrahigh temporal resolution. The sub-femtosecond dynamics of the saturable X-ray absorption process is simulated. The employed rate equation model confirms that the X-ray-induced mechanisms leading to X-ray transparency can be probed via measurement of an X-ray pulse time structure.
  •  
4.
  • Chaudret, Robin, et al. (författare)
  • Revisiting H2O Nucleation around Au+ and Hg2+ : The Peculiar "Pseudo-Soft" Character of the Gold Cation
  • 2014
  • Ingår i: Journal of Chemical Theory and Computation. - : American Chemical Society (ACS). - 1549-9618 .- 1549-9626. ; 10:5, s. 1900-1909
  • Tidskriftsartikel (refereegranskat)abstract
    • In this contribution, we propose a deeper understanding of the electronic effects affecting the nucleation of water around the Au+ and Hg2+ metal cations using quantum chemistry. To do so, and in order to go beyond usual energetical studies, we make extensive use of state of the art quantum interpretative techniques combining ELF/NCI/QTAIM/EDA computations to capture all ranges of interactions stabilizing the well characterized microhydrated structures. The Electron Localization Function (ELF) topological analysis reveals the peculiar role of the Au+ outer-shell core electrons (subvalence) that appear already spatially preorganized once the addition of the first water molecule occurs. Thus, despite the addition of other water molecules, the electronic structure of Au(H2O)(+) appears frozen due to relativistic effects leading to a maximal acceptation of only two waters in gold's first hydration shell. As the values of the QTAIM (Quantum Theory of Atoms in Molecules) cations's charge is discussed, the Non Covalent Interactions (NCI) analysis showed that Au+ appears still able to interact through longer range van der Waals interaction with the third or fourth hydration shell water molecules. As these types of interaction are not characteristic of either a hard or soft metal cation, we introduced the concept of a "pseudo-soft" cation to define Au+ behavior. Then, extending the study, we performed the same computations replacing Au+ with Hg2+, an isoelectronic cation. If Hg2+ behaves like Au+ for small water clusters, a topological, geometrical, and energetical transition appears when the number of water molecules increases. Regarding the HSAB theory, this transition is characteristic of a shift of Hg2+ from a pseudosoft form to a soft ion and appears to be due to a competition between the relativistic and correlation effects. Indeed, if relativistic effects are predominant, then mercury will behave like gold and have a similar subvalence/geometry; otherwise when correlation effects are predominant, Hg2+ behaves like a soft cation.
  •  
5.
  • De Gracia Triviño, Juan Angel, et al. (författare)
  • Complete Active Space Methods for NISQ Devices: The Importance of Canonical Orbital Optimization for Accuracy and Noise Resilience
  • 2023
  • Ingår i: Journal of Chemical Theory and Computation. - : American Chemical Society (ACS). - 1549-9618 .- 1549-9626. ; 19:10, s. 2863-2872
  • Tidskriftsartikel (refereegranskat)abstract
    • To avoid the scaling of the number of qubits with the size of the basis set, one can divide the molecular space into active and inactive regions, which is also known as complete active space methods. However, selecting the active space alone is not enough to accurately describe quantum mechanical effects such as correlation. This study emphasizes the importance of optimizing the active space orbitals to describe correlation and improve the basis-dependent Hartree-Fock energies. We will explore classical and quantum computation methods for orbital optimization and compare the chemically inspired ansatz, UCCSD, with the classical full CI approach for describing the active space in both weakly and strongly correlated molecules. Finally, we will investigate the practical implementation of a quantum CASSCF, where hardware-efficient circuits must be used and noise can interfere with accuracy and convergence. Additionally, we will examine the impact of using canonical and noncanonical active orbitals on the convergence of the quantum CASSCF routine in the presence of noise.
  •  
6.
  • Delcey, Mickaël G., 1988-, et al. (författare)
  • Accurate calculations of geometries and singlet-triplet energy differences for active-site models of [NiFe] hydrogenase
  • 2014
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 16:17, s. 7927-7938
  • Tidskriftsartikel (refereegranskat)abstract
    • We have studied the geometry and singlet-triplet energy difference of two mono-nuclear Ni2+ models related to the active site in [NiFe] hydrogenase. Multiconfigurational second-order perturbation theory based on a complete active-space wavefunction with an active space of 12 electrons in 12 orbitals, CASPT2(12,12), reproduces experimental bond lengths to within 1 pm. Calculated singlet-triplet energy differences agree with those obtained from coupled-cluster calculations with single, double and (perturbatively treated) triple excitations (CCSD(T)) to within 12 kJ mol(-1). For a bimetallic model of the active site of [NiFe] hydrogenase, the CASPT2(12,12) results were compared with the results obtained with an extended active space of 22 electrons in 22 orbitals. This is so large that we need to use restricted active-space theory (RASPT2). The calculations predict that the singlet state is 48-57 kJ mol(-1) more stable than the triplet state for this model of the Ni-Sl(a) state. However, in the [NiFe] hydrogenase protein, the structure around the Ni ion is far from the square-planar structure preferred by the singlet state. This destabilises the singlet state so that it is only similar to 24 kJ mol(-1) more stable than the triplet state. Finally, we have studied how various density functional theory methods compare to the experimental, CCSD(T), CASPT2, and RASPT2 results. Semi-local functionals predict the best singlet-triplet energy differences, with BP86, TPSS, and PBE giving mean unsigned errors of 12-13 kJ mol(-1) (maximum errors of 25-31 kJ mol(-1)) compared to CCSD(T). For bond lengths, several methods give good results, e. g. TPSS, BP86, and M06, with mean unsigned errors of 2 pm for the bond lengths if relativistic effects are considered.
  •  
7.
  •  
8.
  • Delcey, Mickaël G., 1988-, et al. (författare)
  • Analytical gradients of complete active space self-consistent field energies using Cholesky decomposition : Geometry optimization and spin-state energetics of a ruthenium nitrosyl complex
  • 2014
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 140:17, s. 174103-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a formulation of analytical energy gradients at the complete active space self-consistent field (CASSCF) level of theory employing density fitting (DF) techniques to enable efficient geometry optimizations of large systems. As an example, the ground and lowest triplet state geometries of a ruthenium nitrosyl complex are computed at the DF-CASSCF level of theory and compared with structures obtained from density functional theory (DFT) using the B3LYP, BP86, and M06L functionals. The average deviation of all bond lengths compared to the crystal structure is 0.042 angstrom at the DF-CASSCF level of theory, which is slightly larger but still comparable with the deviations obtained by the tested DFT functionals, e. g., 0.032 angstrom with M06L. Specifically, the root-mean-square deviation between the DF-CASSCF and best DFT coordinates, delivered by BP86, is only 0.08 angstrom for S-0 and 0.11 angstrom for T-1, indicating that the geometries are very similar. While keeping the mean energy gradient errors below 0.25%, the DF technique results in a 13-fold speedup compared to the conventional CASSCF geometry optimization algorithm. Additionally, we assess the singlet-triplet energy vertical and adiabatic differences with multiconfigurational second-order perturbation theory (CASPT2) using the DF-CASSCF and DFT optimized geometries. It is found that the vertical CASPT2 energies are relatively similar regardless of the geometry employed whereas the adiabatic singlet-triplet gaps are more sensitive to the chosen triplet geometry. (C) 2014 AIP Publishing LLC.
  •  
9.
  • Delcey, Mickaël G., 1988-, et al. (författare)
  • Analytical gradients of the state-average complete active space self-consistent field method with density fitting
  • 2015
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 143:4
  • Tidskriftsartikel (refereegranskat)abstract
    • An efficient implementation of the state-averaged complete active space self-consistent field (SA-CASSCF) gradients employing density fitting (DF) is presented. The DF allows a reduction both in scaling and prefactors of the different steps involved. The performance of the algorithm is demonstrated on a set of molecules ranging up to an iron-Heme b complex which with its 79 atoms and 811 basis functions is to our knowledge the largest SA-CASSCF gradient computed. For smaller systems where the conventional code could still be used as a reference, both the linear response calculation and the gradient formation showed a clear timing reduction and the overall cost of a geometry optimization is typically reduced by more than one order of magnitude while the accuracy loss is negligible.
  •  
10.
  • Delcey, Mickaël G., 1988-, et al. (författare)
  • Communication : Theoretical prediction of the structure and spectroscopic properties of the X∼ and A∼ states of hydroxymethyl peroxy (HOCH2OO) radical
  • 2013
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 138:2, s. 021105-
  • Tidskriftsartikel (refereegranskat)abstract
    • The hydroxymethyl peroxy (HMOO) radical is a radical product from the oxidation of non-methane hydrocarbons. The present study provides theoretical prediction of critical spectroscopic features of this radical that should aid in its experimental characterization. Structure, rotational constants, and harmonic frequencies are presented for the ground and first excited electronic states of HMOO. The adiabatic transition energy for the A←X process is 7360 cm-1, suggesting that this transition, occurring in the mid to near infrared, is the most promising candidate for observing the radical spectroscopically. The band origin of the A←X transition of HMOO is calibrated and benchmarked with the corresponding state of the HOO radical, which is experimentally and theoretically well characterized.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 25
Typ av publikation
tidskriftsartikel (23)
doktorsavhandling (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (21)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Lindh, Roland (10)
Lundberg, Marcus, 19 ... (7)
Aquilante, Francesco (6)
Ferre, Nicolas (4)
Guo, Meiyuan (3)
Veryazov, Valera (3)
visa fler...
Malmqvist, Per-Åke (3)
Pedersen, Thomas Bon ... (3)
Freitag, Leon (3)
Lindh, Roland, Profe ... (3)
Reiher, Markus (3)
Knecht, Stefan (2)
Alavi, Ali (2)
Gagliardi, Laura (2)
Fernández Galván, Ig ... (2)
Autschbach, Jochen (2)
Chibotaru, Liviu F. (2)
Odelius, Michael (2)
Olivucci, Massimo (2)
Pierloot, Kristine (2)
Schapiro, Igor (2)
Sá, Jacinto (1)
Szlachetko, Jakub (1)
Zamudio-Bayer, Vicen ... (1)
Timm, Martin (1)
Lau, J. Tobias (1)
Montorsi, Francesco (1)
Kovačević, Goran (1)
Scott, Mikael (1)
Li, Xin (1)
Rinkevicius, Zilvina ... (1)
Norman, Patrick (1)
Angeli, Celestino (1)
Coriani, Sonia (1)
Pedersen, Thomas B. (1)
Ryde, Ulf (1)
Johansson, Marcus (1)
Contreras-Garcia, Ju ... (1)
Battaglia, Stefano (1)
Baiardi, Alberto (1)
Conti, Irene (1)
De Vico, Luca (1)
Garavelli, Marco (1)
Larsson, Ernst D. (1)
Nenov, Artur (1)
Norell, Jesper (1)
Phung, Quan M. (1)
Segarra-Marti, Javie ... (1)
Segatta, Francesco (1)
Sergentu, Dumitru-Cl ... (1)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (25)
Uppsala universitet (20)
Lunds universitet (8)
Stockholms universitet (3)
Chalmers tekniska högskola (2)
Språk
Engelska (25)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (24)
Teknik (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy