SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Delfs T.) "

Sökning: WFRF:(Delfs T.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Faatz, B., et al. (författare)
  • Simultaneous operation of two soft x-ray free-electron lasers driven by one linear accelerator
  • 2016
  • Ingår i: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 18
  • Tidskriftsartikel (refereegranskat)abstract
    • Extreme-ultraviolet to x-ray free-electron lasers (FELs) in operation for scientific applications are up to now single-user facilities. While most FELs generate around 100 photon pulses per second, FLASH at DESY can deliver almost two orders of magnitude more pulses in this time span due to its superconducting accelerator technology. This makes the facility a prime candidate to realize the next step in FELs-dividing the electron pulse trains into several FEL lines and delivering photon pulses to several users at the same time. Hence, FLASH has been extended with a second undulator line and self-amplified spontaneous emission (SASE) is demonstrated in both FELs simultaneously. FLASH can now deliver MHz pulse trains to two user experiments in parallel with individually selected photon beam characteristics. First results of the capabilities of this extension are shown with emphasis on independent variation of wavelength, repetition rate, and photon pulse length.
  •  
2.
  •  
3.
  • Mezza, D., et al. (författare)
  • Characterization of the AGIPD1.1 readout chip and improvements with respect to AGIPD1.0
  • 2019
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 945
  • Tidskriftsartikel (refereegranskat)abstract
    • AGIPD, the Adaptive Gain Integrating Pixel Detector, is a hybrid detector with a frame rate of 4.5 MHz, a dynamic range up to 104⋅ 12.4 keV photons, as well as single photon resolution, developed for the European XFEL (Eu.XFEL). The final 1 Mpixel detector system consists of 16 tiled modules each one with 16 readout chips. The single ASIC is 64 x 64 pixels, each with a size of 200 x 200 μm2. Each pixel can store up to 352 images. This work is focused on the characterization of AGIPD1.1, the second version of the full scale ASIC, and the improvements with respect to AGIPD1.0. From the measurements presented in this paper we show that the flaws observed in AGIPD1.0 (i.e. ghosting, crosstalk, slow readout speed) have been fixed in AGIPD1.1. In addition the main performance parameters such as noise, dynamic range and so on were measured for the new version of the ASIC and will be summarized. 
  •  
4.
  • Mezza, D., et al. (författare)
  • New calibration circuitry and concept for AGIPD
  • 2016
  • Ingår i: Journal of Instrumentation. - 1748-0221. ; 11:11
  • Tidskriftsartikel (refereegranskat)abstract
    • AGIPD (adaptive gain integrating pixel detector) is a detector system developed for the European XFEL (XFEL.EU), which is currently being constructed in Hamburg, Germany. The XFEL.EU will operate with bunch trains at a repetition rate of 10 Hz. Each train consists of 2700 bunches with a temporal separation of 220 ns corresponding to a rate of 4.5 MHz. Each photon pulse has a duration of < 100 fs (rms) and contains up to 1012 photons in an energy range between 0.25 and 25 keV . In order to cope with the large dynamic range, the first stage of each bump-bonded AGIPD ASIC is a charge sensitive preamplifier with three different gain settings that are dynamically switched during the charge integration. Dynamic gain switching allows single photon resolution in the high gain stage and can cover a dynamic range of 104 × 12.4 keV photons in the low gain stage. The burst structure of the bunch trains forces to have an intermediate in-pixel storage of the signals. The full scale chip has 352 in-pixel storage cells inside the pixel area of 200 × 200 μm2. This contribution will report on the measurements done with the new calibration circuitry of the AGIPD1.1 chip (without sensor). These results will be compared with the old version of the chip (AGIPD1.0). A new calibration method (that is not AGIPD specific) will also be shown.
  •  
5.
  • Trunk, Ulrich, et al. (författare)
  • AGIPD : A multi megapixel, multi megahertz X-ray camera for the European XFEL
  • 2017
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE - International Society for Optical Engineering. - 9781510611009
  • Konferensbidrag (refereegranskat)abstract
    • AGIPD is a hybrid pixel detector developed by DESY, PSI, and the Universities of Bonn and Hamburg. It is targeted for use at the European XFEL, a source with unique properties: a train of up to 2700 pulses is repeated at 10 Hz rate. The pulses inside a train are ≤100fs long and separated by 220 ns, containing up to 1012 photons of 12.4 keV each. The readout ASICs with 64 x 64 pixels each have to cope with these properties: Single photon sensitivity and a dynamic range up to 104 photons/pixel in the same image as well as storage for as many as possible images of a pulse train for delayed readout, prior to the next train. The high impinging photon flux also requires a very radiation hard design of sensor and ASIC, which uses 130 nm CMOS technology and radiation tolerant techniques. The signal path inside a pixel of the ASIC consists of a charge sensitive preamplifier with 3 individual gains, adaptively selected by a subsequent discriminator. The preamp also feeds to a correlated double sampling stage, which writes to an analogue memory to record 352 frames. It is random-access, so it can be used most efficiently by overwriting bad or empty images. Encoded gain information is stored to a similar memory. Readout of these memories is via a common charge sensitive amplifier in each pixel, and multiplexers on four differential ports. Operation of the ASIC is controlled via a command interface, using 3 LVDS lines. It also serves to configure the chip's operational parameters and timings.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy