SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dell Amico Alessandro) "

Sökning: WFRF:(Dell Amico Alessandro)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dell' Amico, Alessandro, et al. (författare)
  • Modelling and experimental verification of a secondary controlled six-wheel pendulum arm forwarder
  • 2015
  • Ingår i: the 13th European Conference of ISTVS. - 9781942112464 ; , s. 1-10
  • Konferensbidrag (refereegranskat)abstract
    • One of the major concerns in the forest industry is the impact on the soil caused by the forest machines duringharvesting, where damages can have a negative impact on e.g. further growth. One of the main reasons is wheel slip.Another concern is the working environment of the operator due to the harsh ground in the forest. Both these issueshave a negative impact on productivity. An attempt to overcome these challenges is made within a collaborative researchproject, which among others also includes Linköping University, where a new six-wheel pendulum arm forwarder isbeing developed. The new forwarder aims at reducing the soil damage by an even pressure distribution and smooth torquecontrol, as well as increased damping of the complete chassis, and thereby improving the working environment. This ispossible since each wheel, driven by its own hydraulic motor, is attached to a pendulum arm allowing to control the heightof each wheel independently of each other. The forwarder has a total maximum weight of 31 tonnes, including 14 tonnesmaximum load. It consists of two steerable joints and is driven by a 360 bhp diesel engine. The transmission consists oftwo hydraulic pumps and six hydraulic motors.This paper deals with the development of the driveline and presents the first experimental tests of the implementedcontrol strategies, where a secondary control approach is chosen for its ability to individually control the torque on eachwheel. The control strategies, presented in the paper, include pressure control, velocity control of the vehicle and ananti-slip controller. To support the development of the control strategies, models of the vehicle and hydraulic subsystemsare derived. The aim with this paper is to verify the concepts on the actual vehicle. The initial results are promising,indicating that the suggested concept is feasible.
  •  
2.
  • Ericson, Liselott, 1976-, et al. (författare)
  • MODELLING OF A SECONDARY CONTROLLED SIX-WHEEL PENDULUM ARM FORWARDER
  • 2015
  • Konferensbidrag (refereegranskat)abstract
    • One of the major concerns in the forest industry is the impact on the soil caused by the forest machines during harvesting, where damage can have a negative impact on growth at replanting for example. Another concern is the working environment of the operator. Both these issues have a negative impact on productivity. A new six-wheel pendulum arm forwarder is being developed within a collaborative research project. The new forwarder aims to reduce soil damage by means of an even pressure distribution and smooth torque control. This paper presents the first step in the development of the driveline, where a secondary control approach is chosen for its ability to control the motion of each wheel individually. Simulation models of both vehicle and driveline have been constructed developed, partly for the development of the control strategy, and partly for evaluation. A speed control concept and a torque control concept have both been evaluated for different scenarios with regard to their ability to reduce wheel slip. Results have shown that a velocity control approach is more sensitive to kinematic model accuracy while wheel slip is handled automatically. A torque control approach is more robust towards model accuracy while the reduction of slip is dependent on an accurate model.
  •  
3.
  • Nostrani, Marcos Paulo, et al. (författare)
  • Multi-Chamber Actuator Using Digital Pump for Position and Velocity Control Applied in Aircraft
  • 2023
  • Ingår i: International Journal of Fluid Power. - : RIVER PUBLISHERS. - 1439-9776 .- 2332-1180. ; 24:1
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents a multi-chamber hydraulic actuator controlled by digital pumps and on/off valves, in order to improve the efficiency of hydraulic systems applied in aircraft for flight control. Hydraulic positioning systems are used in many different applications, such as mobile machinery, industry and aerospace. In aircraft, the hydraulic actuators are used at flight control surfaces, cargo doors, steering, landing gear and so one. However, the mas-sive use of resistive control techniques, which throttles the passages of the hydraulic fluid, associated with internal leakage of the hydraulic components, make these systems low energy efficient. In order to improve their energy efficiency, digital hydraulics emerges as a promising solution mainly for mobile applications. In this paper a hydraulic positioning system for aircraft control surfaces using a multi-chamber actuator controlled by on/off valves and a digital pump is proposed. The use of a digital pump with three fixed displacement pumps can provide eight different volumetric displacement out-puts. The multi-chamber actuator with four areas can operate in two different modes, normal or regenerative, resulting in six different equivalent areas. The regenerative mode allows the actuator to achieve higher actuation velocity values with smaller pumps. These equivalent areas combined with the dif-ferent supplied flow rates can deliver 43 different discrete output velocity values for the actuator, in steady-state. For the system dynamic analyses, three mathematical simulation models were developed using MATLAB/Simulink and Hopsan, one for the digital system, and two for the conventional solutions applied in aircraft (Servo Hydraulic Actuators (SHA) and Electro Hydrostatic Actuator (EHA)). The simulation results demonstrate that the digital actuator can achieve, for position control, a maximum position error, in a steady-state, of 0.7 mm. From the energy consumption point of view, the digital circuit consumes 31 times less energy when compared with the SHA and 1.7 when compared to the EHA, resulting in an energy efficiency of 54%.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy