SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Delzanno G. L.) "

Sökning: WFRF:(Delzanno G. L.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Martin, P., et al. (författare)
  • Overview of the RFX-mod fusion science programme
  • 2013
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 53:10, s. 104018-
  • Forskningsöversikt (refereegranskat)abstract
    • This paper reports the highlights of the RFX-mod fusion science programme since the last 2010 IAEA Fusion Energy Conference. The RFX-mod fusion science programme focused on two main goals: exploring the fusion potential of the reversed field pinch (RFP) magnetic configuration and contributing to the solution of key science and technology problems in the roadmap to ITER. Active control of several plasma parameters has been a key tool in this endeavour. New upgrades on the system for active control of magnetohydrodynamic (MHD) stability are underway and will be presented in this paper. Unique among the existing fusion devices, RFX-mod has been operated both as an RFP and as a tokamak. The latter operation has allowed the exploration of edge safety factor q edge < 2 with active control of MHD stability and studies concerning basic energy and flow transport mechanisms. Strong interaction has continued with the stellarator community in particular on the physics of helical states and on three-dimensional codes.
  •  
2.
  • Jordanova, V. K., et al. (författare)
  • Specification of the near-Earth space environment with SHIELDS
  • 2018
  • Ingår i: Journal of Atmospheric and Solar-Terrestrial Physics. - : PERGAMON-ELSEVIER SCIENCE LTD. - 1364-6826 .- 1879-1824. ; 177, s. 148-159
  • Tidskriftsartikel (refereegranskat)abstract
    • Predicting variations in the near-Earth space environment that can lead to spacecraft damage and failure is one example of "space weather" and a big space physics challenge. A project recently funded through the Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) program aims at developing a new capability to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. The project goals are to understand the dynamics of the surface charging environment (SCE), the hot (keV) electrons representing the source and seed populations for the radiation belts, on both macro and micro-scale. Important physics questions related to particle injection and acceleration associated with magnetospheric storms and substorms, as well as plasma waves, are investigated. These challenging problems are addressed using a team of world-class experts in the fields of space science and computational plasma physics, and state-of-the-art models and computational facilities. A full two-way coupling of physics-based models across multiple scales, including a global MHD (BATS-R-US) embedding a particle-in-cell (iPIC3D) and an inner magnetosphere (RAM-SCB) codes, is achieved. New data assimilation techniques employing in situ satellite data are developed; these provide an order of magnitude improvement in the accuracy in the simulation of the SCE. SHIELDS also includes a post-processing tool designed to calculate the surface charging for specific spacecraft geometry using the Curvilinear Particle-In-Cell (CPIC) code that can be used for reanalysis of satellite failures or for satellite design.
  •  
3.
  • Markidis, Markidis, et al. (författare)
  • Signatures of secondary collisionless magnetic reconnection driven by kink instability of a flux rope
  • 2014
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 56:6, s. 064010-
  • Tidskriftsartikel (refereegranskat)abstract
    • The kinetic features of secondary magnetic reconnection in a single flux rope undergoing internal kink instability are studied by means of three-dimensional particle-in-cell simulations. Several signatures of secondary magnetic reconnection are identified in the plane perpendicular to the flux rope: a quadrupolar electron and ion density structure and a bipolar Hall magnetic field develop in proximity of the reconnection region. The most intense electric fields form perpendicularly to the local magnetic field, and a reconnection electric field is identified in the plane perpendicular to the flux rope. An electron current develops along the reconnection line, in the opposite direction of the electron current supporting the flux rope magnetic field structure. Along the reconnection line, several bipolar structures of the electric field parallel to the magnetic field occur, making the magnetic reconnection region turbulent. The reported signatures of secondary magnetic reconnection can help to localize magnetic reconnection events in space, astrophysical and fusion plasmas.
  •  
4.
  • Manzini, G., et al. (författare)
  • A Legendre-Fourier spectral method with exact conservation laws for the Vlasov-Poisson system
  • 2016
  • Ingår i: Journal of Computational Physics. - : Elsevier. - 0021-9991 .- 1090-2716. ; 317, s. 82-107
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the design and implementation of an L-2-stable spectral method for the discretization of the Vlasov-Poisson model of a collisionless plasma in one space and velocity dimension. The velocity and space dependence of the Vlasov equation are resolved through a truncated spectral expansion based on Legendre and Fourier basis functions, respectively. The Poisson equation, which is coupled to the Vlasov equation, is also resolved through a Fourier expansion. The resulting system of ordinary differential equation is discretized by the implicit second-order accurate Crank-Nicolson time discretization. The non-linear dependence between the Vlasov and Poisson equations is iteratively solved at any time cycle by a Jacobian-Free Newton-Krylov method. In this work we analyze the structure of the main conservation laws of the resulting Legendre-Fourier model, e.g., mass, momentum, and energy, and prove that they are exactly satisfied in the semi-discrete and discrete setting. The L-2-stability of the method is ensured by discretizing the boundary conditions of the distribution function at the boundaries of the velocity domain by a suitable penalty term. The impact of the penalty term on the conservation properties is investigated theoretically and numerically. An implementation of the penalty term that does not affect the conservation of mass, momentum and energy, is also proposed and studied. A collisional term is introduced in the discrete model to control the filamentation effect, but does not affect the conservation properties of the system. Numerical results on a set of standard test problems illustrate the performance of the method.
  •  
5.
  • Vencels, J., et al. (författare)
  • SpectralPlasmaSolver : A Spectral Code for Multiscale Simulations of Collisionless, Magnetized Plasmas
  • 2016
  • Ingår i: Journal of Physics, Conference Series. - : Institute of Physics Publishing (IOPP). - 1742-6588 .- 1742-6596. ; 719:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the design and implementation of a spectral code, called SpectralPlasmaSolver (SPS), for the solution of the multi-dimensional Vlasov-Maxwell equations. The method is based on a Hermite-Fourier decomposition of the particle distribution function. The code is written in Fortran and uses the PETSc library for solving the non-linear equations and preconditioning and the FFTW library for the convolutions. SPS is parallelized for shared- memory machines using OpenMP. As a verification example, we discuss simulations of the two-dimensional Orszag-Tang vortex problem and successfully compare them against a fully kinetic Particle-In-Cell simulation. An assessment of the performance of the code is presented, showing a significant improvement in the code running-time achieved by preconditioning, while strong scaling tests show a factor of 10 speed-up using 16 threads.
  •  
6.
  • Vencels, Juris, et al. (författare)
  • Spectral solver for multi-scale plasma physics simulations with dynamically adaptive number of moments
  • 2015
  • Ingår i: Procedia Computer Science. - : Elsevier. - 1877-0509. ; , s. 1148-1157
  • Konferensbidrag (refereegranskat)abstract
    • A spectral method for kinetic plasma simulations based on the expansion of the velocity distribution function in a variable number of Hermite polynomials is presented. The method is based on a set of non-linear equations that is solved to determine the coefficients of the Hermite expansion satisfying the Vlasov and Poisson equations. In this paper, we first show that this technique combines the fluid and kinetic approaches into one framework. Second, we present an adaptive strategy to increase and decrease the number of Hermite functions dynamically during the simulation. The technique is applied to the Landau damping and two-stream instability test problems. Performance results show 21% and 47% saving of total simulation time in the Landau and two-stream instability test cases, respectively.
  •  
7.
  • Vignitchouk, Ladislas, et al. (författare)
  • Electron reflection effects on particle and heat fluxes to positively charged dust subject to strong electron emission
  • 2018
  • Ingår i: Physics of Plasmas. - : AMER INST PHYSICS. - 1070-664X .- 1089-7674. ; 25:6
  • Tidskriftsartikel (refereegranskat)abstract
    • A new model describing dust charging and heating in unmagnetized plasmas in the presence of large electron emission currents is presented. By accounting for the formation of a potential well due to trapped emitted electrons when the dust is positively charged, this model extends the so-called OML+ approach, thus far limited to thermionic emission, by including electron-induced emission processes, and in particular low-energy quasi-elastic electron reflection. Revised semi-analytical formulas for the current and heat fluxes associated with emitted electrons are successfully validated against particle-in-cell simulations and predict an overall reduction of dust heating by up to a factor of 2. When applied to tungsten dust heating in divertor-like plasmas, the new model predicts that the dust lifetime increases by up to 80%, as compared with standard orbital-motion-limited estimates.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy