SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dembrower K) "

Sökning: WFRF:(Dembrower K)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Matsoukas, Christos, et al. (författare)
  • Adding seemingly uninformative labels helps in low data regimes
  • 2020
  • Ingår i: 37th International Conference on Machine Learning, ICML 2020. - : International Machine Learning Society (IMLS). ; , s. 6731-6740
  • Konferensbidrag (refereegranskat)abstract
    • Evidence suggests that networks trained on large datasets generalize well not solely because of the numerous training examples, but also class diversity which encourages learning of enriched features. This raises the question of whether this remains true when data is scarce - is there an advantage to learning with additional labels in low-data regimes In this work, we consider a task that requires difficult-To-obtain expert annotations: Tumor segmentation in mammography images. We show that, in low-data settings, performance can be improved by complementing the expert annotations with seemingly uninformative labels from non-expert annotators, turning the task into a multi-class problem. We reveal that these gains increase when less expert data is available, and uncover several interesting properties through further studies. We demonstrate our findings on CSAW-S, a new dataset that we introduce here, and confirm them on two public datasets.
  •  
2.
  •  
3.
  • Dembrower, K, et al. (författare)
  • A Multi-million Mammography Image Dataset and Population-Based Screening Cohort for the Training and Evaluation of Deep Neural Networks-the Cohort of Screen-Aged Women (CSAW)
  • 2020
  • Ingår i: Journal of digital imaging. - : Springer Science and Business Media LLC. - 1618-727X .- 0897-1889. ; 33:2, s. 408-413
  • Tidskriftsartikel (refereegranskat)abstract
    • For AI researchers, access to a large and well-curated dataset is crucial. Working in the field of breast radiology, our aim was to develop a high-quality platform that can be used for evaluation of networks aiming to predict breast cancer risk, estimate mammographic sensitivity, and detect tumors. Our dataset, Cohort of Screen-Aged Women (CSAW), is a population-based cohort of all women 40 to 74 years of age invited to screening in the Stockholm region, Sweden, between 2008 and 2015. All women were invited to mammography screening every 18 to 24 months free of charge. Images were collected from the PACS of the three breast centers that completely cover the region. DICOM metadata were collected together with the images. Screening decisions and clinical outcome data were collected by linkage to the regional cancer center registers. Incident cancer cases, from one center, were pixel-level annotated by a radiologist. A separate subset for efficient evaluation of external networks was defined for the uptake area of one center. The collection and use of the dataset for the purpose of AI research has been approved by the Ethical Review Board. CSAW included 499,807 women invited to screening between 2008 and 2015 with a total of 1,182,733 completed screening examinations. Around 2 million mammography images have currently been collected, including all images for women who developed breast cancer. There were 10,582 women diagnosed with breast cancer; for 8463, it was their first breast cancer. Clinical data include biopsy-verified breast cancer diagnoses, histological origin, tumor size, lymph node status, Elston grade, and receptor status. One thousand eight hundred ninety-one images of 898 women had tumors pixel level annotated including any tumor signs in the prior negative screening mammogram. Our dataset has already been used for evaluation by several research groups. We have defined a high-volume platform for training and evaluation of deep neural networks in the domain of mammographic imaging.
  •  
4.
  •  
5.
  •  
6.
  • Dembrower, K., et al. (författare)
  • Comparison of a deep learning risk score and standard mammographic density score for breast cancer risk prediction
  • 2020
  • Ingår i: Radiology. - : Radiological Society of North America Inc.. - 0033-8419 .- 1527-1315. ; 294:2, s. 265-272
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Most risk prediction models for breast cancer are based on questionnaires and mammographic density assessments. By training a deep neural network, further information in the mammographic images can be considered. Purpose: To develop a risk score that is associated with future breast cancer and compare it with density-based models. Materials and Methods: In this retrospective study, all women aged 40-74 years within the Karolinska University Hospital uptake area in whom breast cancer was diagnosed in 2013-2014 were included along with healthy control subjects. Network development was based on cases diagnosed from 2008 to 2012. The deep learning (DL) risk score, dense area, and percentage density were calculated for the earliest available digital mammographic examination for each woman. Logistic regression models were fitted to determine the association with subsequent breast cancer. False-negative rates were obtained for the DL risk score, age-adjusted dense area, and age-adjusted percentage density. Results: A total of 2283 women, 278 of whom were later diagnosed with breast cancer, were evaluated. The age at mammography (mean, 55.7 years vs 54.6 years; P< .001), the dense area (mean, 38.2 cm2 vs 34.2 cm2; P< .001), and the percentage density (mean, 25.6% vs 24.0%; P< .001) were higher among women diagnosed with breast cancer than in those without a breast cancer diagnosis. The odds ratios and areas under the receiver operating characteristic curve (AUCs) were higher for age-adjusted DL risk score than for dense area and percentage density: 1.56 (95% confidence interval [CI]: 1.48, 1.64; AUC, 0.65), 1.31 (95% CI: 1.24, 1.38; AUC, 0.60), and 1.18 (95% CI: 1.11, 1.25; AUC, 0.57), respectively (P< .001 for AUC). The false-negative rate was lower: 31% (95% CI: 29%, 34%), 36% (95% CI: 33%, 39%; P = .006), and 39% (95% CI: 37%, 42%; P< .001); this difference was most pronounced for more aggressive cancers. Conclusion: Compared with density-based models, a deep neural network can more accurately predict which women are at risk for future breast cancer, with a lower false-negative rate for more aggressive cancers.
  •  
7.
  •  
8.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy