SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Deng Yanhui) "

Sökning: WFRF:(Deng Yanhui)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Huang, Wei, et al. (författare)
  • Substrate Promiscuity, Crystal Structure, and Application of a Plant UDP-Glycosyltransferase UGT74AN3
  • 2024
  • Ingår i: ACS Catalysis. - : American Chemical Society (ACS). - 2155-5435. ; 14:1, s. 475-488
  • Tidskriftsartikel (refereegranskat)abstract
    • Glycosyltransferases are effective enzymes for glycosylating natural products (NPs), and some of them have the unusual property of being exceedingly promiscuous catalytically toward a range of substrates. UGT74AN3 is a plant glycosyltransferase identified from Catharanthus roseus in our previous work. In this study, we found that UGT74AN3 exhibits high substrate promiscuity toward 78 acceptors and 6 sugar donors and also exhibits N-/S-glycosylation activity toward simple aromatic compounds. The crystal structures of UGT74AN3 in the complex with various NPs were solved. Sugar donor recognition of UGT74AN3 was altered by structure-based mutagenesis, and the T145V mutant shifted its sugar donor preference from UDP-Glc to UDP-Xyl. Structural analysis reveals that a spacious U-shaped hydrophobic binding pocket accounts for the high substrate promiscuity of UGT74AN3. The residues E85 and F193 might serve as gatekeepers of UGT74AN3 to control substrate binding. In addition, a rare substrate binding mode was discovered in the structure of UGT74AN3, and the process of substrate flipping in the pocket was charted by molecular dynamics simulations. Moreover, a cost-effective one-pot system by coupling UGT74AN3 with AtSuSy, a sucrose synthase, was established for in situ generating and recycling UDP-Glc from sucrose and UDP to glycosylate NPs. Our study reveals the structural basis underlying the substrate promiscuity of UGT74AN3 and provides an efficient and economical enzymatic synthesis strategy for producing valuable glycosides for drug discovery.
  •  
2.
  •  
3.
  • Tan, Yanhui, et al. (författare)
  • A marine fungus-derived nitrobenzoyl sesquiterpenoid suppresses receptor activator of NF-κB ligand-induced osteoclastogenesis and inflammatory bone destruction
  • 2020
  • Ingår i: British Journal of Pharmacology. - : Wiley. - 0007-1188 .- 1476-5381. ; 177:18, s. 4242-4260
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND AND PURPOSE: Osteoclasts are unique cells to absorb bone. Targeting osteoclast differentiation is a therapeutic strategy for osteolytic diseases. Natural marine products have already become important sources of new drugs. The naturally occurring nitrobenzoyl sesquiterpenoids first identified from marine fungi in 1998 are bioactive compounds with a special structure, but their pharmacological functions are largely unknown. Here, we investigated six marine fungus-derived nitrobenzoyl sesquiterpenoids on osteoclastogenesis and elucidated the mechanisms.EXPERIMENTAL APPROACH: Compounds were first tested by RANKL-induced NF-κB luciferase activity and osteoclastic TRAP assay, followed by molecular docking to characterize the structure-activity relationship. The effects and mechanisms of the most potent nitrobenzoyl sesquiterpenoid on RANKL-induced osteoclastogenesis and bone resorption were further evaluated in vitro. Micro-CT and histology analysis were used to assess the prevention of bone destruction by nitrobenzoyl sesquiterpenoids in vivo.KEY RESULTS: Nitrobenzoyl sesquiterpenoid 4, with a nitrobenzoyl moiety at C-14 and a hydroxyl group at C-9, was the most active compound on NF-κB activity and osteoclastogenesis. Consequently, nitrobenzoyl sesquiterpenoid 4 exhibited suppression of RANKL-induced osteoclastogenesis and bone resorption from 0.5 μM. It blocked RANKL-induced IκBa phosphorylation, NF-κB p65 and RelB nuclear translocation, NFATc1 activation, reduced DC-STAMP but not c-Fos expression during osteoclastogenesis in vitro. Nitrobenzoyl sesquiterpenoid 4 also ameliorated LPS-induced osteolysis in vivo.CONCLUSION AND IMPLICATIONS: These results highlighted nitrobenzoyl sesquiterpenoid 4 as a novel inhibitor of osteoclast differentiation. This marine-derived sesquiterpenoid is a promising lead compound for the treatment of osteolytic diseases.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy