SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Denmeade Samuel R) "

Sökning: WFRF:(Denmeade Samuel R)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Denmeade, Samuel R., et al. (författare)
  • Activation of latent protease function of pro-hK2, but not pro-PSA, involves autoprocessing
  • 2001
  • Ingår i: The Prostate. - : Wiley. - 0270-4137. ; 48:2, s. 122-126
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Human glandular kallikrein 2 (hK2) and prostate-specific antigen (PSA) are members of an extensive kallikrein family of proteases. Both proteases are secreted as zymogens or proenzymes containing a seven amino acid propeptide that must be proteolytically removed for enzymatic activation. The physiological proteases that activate pro-hK2 and pro-PSA are not known. METHODS: The pro-hK2 peptide sequence is Val-Pro-Leu-Ile-Gln-Ser-Arg (VPLIQSR). For PSA, the amino acid sequence of the propeptide is Ala-Pro-Leu-Ile-Leu-Ser-Arg (APLILSR). Fluorescent substrates were made by coupling these peptide sequences to 7-amino-4-methylcoumarin (AMC). The hydrolysis of the VPLIQSR-AMC and APLILSR-AMC substrates by hK2, PSA, and a panel of purified proteases was determined. RESULTS: HK2 readily cleaved the pro-hK2 peptide substrate VPLIQSR-AMC with a rate of hydrolysis that was approximately 8-fold higher than an equimolar amount of purified trypsin. HK2 also had the highest hydrolysis rate from among a group of other trypsin-like proteases. In contrast, neither hK2 nor PSA was able to appreciably cleave the pro-PSA substrate APLILSR-AMC. The pro-PSA substrate was most readily hydrolyzed by urokinase and trypsin. CONCLUSIONS: HK2 can hydrolyze the pro-hK2 substrate suggesting that maturation of pro-hK2 to enzymatically active hK2 involves autoprocessing. As expected, PSA, a chymotrypsin-like protease, was unable to hydrolyze either of the propeptide substrates. Therefore, it is unlikely that PSA can auto-process its own enzymatic function. HK2 has trypsin-like specificity but was unable to hydrolyze the pro-PSA substrate. These results raise the possibility that an additional processing protease may be required to fully process PSA to an enzymatically active form.
  •  
2.
  • Janssen, Samuel, et al. (författare)
  • Pharmacokinetics, biodistribution, and antitumor efficacy of a human glandular kallikrein 2 (hK2)-activated thapsigargin prodrug
  • 2006
  • Ingår i: The Prostate. - : Wiley. - 0270-4137 .- 1097-0045. ; 66:4, s. 358-368
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Prostate cancer cells secrete unique proteases such as prostate-specific antigen (PSA) and human glandular kallikrein 2 (hK2) that represent targets for the activation of prodrugs as systemic treatment of metastatic prostate cancer. Previously, a combinatorial peptide library was screened to identify a highly active peptide substrate for hK2. The peptide was coupled to an analog of the potent cytotoxin thapsigargin, L12ADT, to generate an hK2-activated prodrug that was efficiently hydrolyzed by purified hK2, stable to hydrolysis in human and mouse plasma in vitro and selectively toxic to hK2 producing prostate cancer cells in vitro. METHODS: In the current study, toxicology, pharmacokinetics, prodrug biodistribution, and antitumor efficacy studies were performed to evaluate the hK2-activated prodrug in vivo. RESULTS: The single intravenous maximally tolerated dose of prodrug was 6 mg/kg (i.e., 3.67 micromole/kg) which produced peak serum concentration of approximately 36 microM and had a half-life of approximately 40 min. In addition, over a 24 hr period <0.5% of free L12ADT analog was observed in plasma. The prodrug demonstrated significant antitumor effect in vivo while it was being administered, but prolonged intravenous administration was not possible due to local toxicity to tail veins. Subcutaneous administration of equimolar doses produced lower plasma AUC compared to intravenous dosing but equivalent intratumoral levels of prodrug following multiple doses. CONCLUSIONS: The hK2-activated prodrug was stable in vivo. The prodrug, however, was rapidly cleared and difficult to administer over prolonged dosing interval. Additional studies are underway to assess antitumor efficacy with prolonged administration of higher subcutaneous doses of prodrug. Second-generation hK2-activated thapsigargin prodrugs with increased half-lives and improved formulations are also under development.
  •  
3.
  • Denmeade, Samuel R., et al. (författare)
  • Enzymatic activation of a doxorubicin-peptide prodrug by prostate- specific antigen
  • 1998
  • Ingår i: Cancer Research. - 0008-5472. ; 58:12, s. 2537-2540
  • Tidskriftsartikel (refereegranskat)abstract
    • New approaches to target cytotoxic therapy specifically to metastatic prostate cancer sites are urgently needed. As such an approach, an inactive prodrug was synthesized by coupling the primary amine of doxorubicin to the COOH-terminal carboxyl of a seven-amino acid peptide carrier (i.e., Mu-His- Ser-Ser-Lys-Leu-Gln-Leu). The seven-amino acid peptide was documented to be hydrolyzable specifically by the serine protease prostate-specific antigen (PSA) to liberate the active cytotoxin L-leucyl-doxorubicin. Primary cultures of PC-82 human prostate cancer cells secreted high levels of enzymatically active PSA (i.e., 70 ± 5 ng of enzymatically active PSA/106 cells/24 h), whereas LNCaP human prostate cancer ells produced lower levels of enzymatically active PSA (i.e., 2.3 ± 1 ng/106 cells/24 h). LNCaP cells, however, secreted sufficient amounts of enzymatically active PSA to activate the doxorubicin prodrug to a cytotoxic form in vitro. The specificity of the cytotoxic response to the prodrug was demonstrated by the fact that 70 nM of the prodrug killed 50% of the PSA-producing LNCaP cells, whereas doses as high as 1 ♂ had no cytotoxic effect on PSA-nonproducing TSU human prostate cancer cells in vitro.
  •  
4.
  • Denmeade, Samuel R., et al. (författare)
  • Specific and efficient peptide substrates for assaying the proteolytic activity of prostate-specific antigen
  • 1997
  • Ingår i: Cancer Research. - 0008-5472. ; 57:21, s. 4924-4930
  • Tidskriftsartikel (refereegranskat)abstract
    • Prostate-specific antigen (PSA) is a serine protease secreted by hath normal prostate glandular celts and prostate cancer cells. The major proteolytic substrates for PSA are the gel-forming proteins in semen, semenogelin (Sg) I and II. On the basis of the PSA cleavage map for Sg I and II, a series of small peptides (ie., ≤ 7 amino acids) was synthesized and coupled at the COOH terminus to 7-amino-4-methyl coumarin. Using these fluorescently tagged substrates, K(m)s and k(cm)s were determined for PSA hydrolysis, and the substrates were also tested for activity against a panel of purified proteases. Previously, a variety of chymotrypsin substrates have been used to assay the enzymatic activity of PSA. The present studies have identified a peptide sequence with a high degree of specificity for PSA (i.e., no detectable hydrolysis by chymotrypsin) and improved K(m)s and k(cat)s over previously used substrates. On the basis of these parameters, the best peptide substrate for PSA has the amino acid sequence HSSKLQ. Using PC-82 human prostate cancer xenografts and human prostate tissues, this PSA substrate was used to document that prostate cancer cells secrete enzymatically active PSA into the extracellular fluid but that once in the blood, PSA is not enzymatically active. On the basis of this information, it should be possible to use the HSSKLQ peptide as a carrier to target peptide- coupled prodrugs for selective activation within sites of PSA-secreting, metastatic prostate cancer cells and not within the blood or other nonprostatic normal tissues.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy