SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dennis Courtney) "

Sökning: WFRF:(Dennis Courtney)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bansal, Sheel, et al. (författare)
  • Practical Guide to Measuring Wetland Carbon Pools and Fluxes
  • 2023
  • Ingår i: Wetlands (Wilmington, N.C.). - : SPRINGER. - 0277-5212 .- 1943-6246. ; 43:8
  • Forskningsöversikt (refereegranskat)abstract
    • Wetlands cover a small portion of the world, but have disproportionate influence on global carbon (C) sequestration, carbon dioxide and methane emissions, and aquatic C fluxes. However, the underlying biogeochemical processes that affect wetland C pools and fluxes are complex and dynamic, making measurements of wetland C challenging. Over decades of research, many observational, experimental, and analytical approaches have been developed to understand and quantify pools and fluxes of wetland C. Sampling approaches range in their representation of wetland C from short to long timeframes and local to landscape spatial scales. This review summarizes common and cutting-edge methodological approaches for quantifying wetland C pools and fluxes. We first define each of the major C pools and fluxes and provide rationale for their importance to wetland C dynamics. For each approach, we clarify what component of wetland C is measured and its spatial and temporal representativeness and constraints. We describe practical considerations for each approach, such as where and when an approach is typically used, who can conduct the measurements (expertise, training requirements), and how approaches are conducted, including considerations on equipment complexity and costs. Finally, we review key covariates and ancillary measurements that enhance the interpretation of findings and facilitate model development. The protocols that we describe to measure soil, water, vegetation, and gases are also relevant for related disciplines such as ecology. Improved quality and consistency of data collection and reporting across studies will help reduce global uncertainties and develop management strategies to use wetlands as nature-based climate solutions.
  •  
2.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
3.
  • Lloyd-Price, Jason, et al. (författare)
  • Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases
  • 2019
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 569:7758, s. 655-661
  • Tidskriftsartikel (refereegranskat)abstract
    • Inflammatory bowel diseases, which include Crohn's disease and ulcerative colitis, affect several million individuals worldwide. Crohn's disease and ulcerative colitis are complex diseases that are heterogeneous at the clinical, immunological, molecular, genetic, and microbial levels. Individual contributing factors have been the focus of extensive research. As part of the Integrative Human Microbiome Project (HMP2 or iHMP), we followed 132 subjects for one year each to generate integrated longitudinal molecular profiles of host and microbial activity during disease (up to 24 time points each; in total 2,965 stool, biopsy, and blood specimens). Here we present the results, which provide a comprehensive view of functional dysbiosis in the gut microbiome during inflammatory bowel disease activity. We demonstrate a characteristic increase in facultative anaerobes at the expense of obligate anaerobes, as well as molecular disruptions in microbial transcription (for example, among clostridia), metabolite pools (acylcarnitines, bile acids, and short-chain fatty acids), and levels of antibodies in host serum. Periods of disease activity were also marked by increases in temporal variability, with characteristic taxonomic, functional, and biochemical shifts. Finally, integrative analysis identified microbial, biochemical, and host factors central to this dysregulation. The study's infrastructure resources, results, and data, which are available through the Inflammatory Bowel Disease Multi'omics Database (http://ibdmdb.org), provide the most comprehensive description to date of host and microbial activities in inflammatory bowel diseases.
  •  
4.
  • Eratne, Dhamidhu, et al. (författare)
  • Cerebrospinal fluid neurofilament light chain differentiates behavioural variant frontotemporal dementia progressors from non-progressors
  • 2022
  • Ingår i: Journal of the Neurological Sciences. - : Elsevier BV. - 0022-510X. ; 442
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Distinguishing behavioural variant frontotemporal dementia (bvFTD) from non-neurodegenerative ‘non-progressor’ mimics of frontal lobe dysfunction, can be one of the most challenging clinical dilemmas. A biomarker of neuronal injury, neurofilament light chain (NfL), could reduce misdiagnosis and delay. Methods: Cerebrospinal fluid (CSF) NfL, amyloid beta 1–42 (AB42), total and phosphorylated tau (T-tau, P-tau) levels were examined in patients with an initial diagnosis of bvFTD. Based on follow-up information, patients were categorised as Progressors or Non-Progressors: further subtyped into Non-Progressor Revised (non-neurological/neurodegenerative final diagnosis), and Non-Progressor Static (static deficits, not fully explained by non-neurological/neurodegenerative causes). Results: Forty-three patients were included: 20 Progressors, 23 Non-Progressors (15 Non-Progressor Revised, 8 Non-Progressor Static), and 20 controls. NfL concentrations were lower in Non-Progressors (Non-Progressors Mean, M = 554 pg/mL, 95%CI:[461, 675], Non-Progressor Revised M = 459 pg/mL, 95%CI:[385, 539], and Non-Progressor Static M = 730 pg/mL, 95%CI:[516, 940]), compared to Progressors (M = 2397 pg/mL, 95%CI:[1607, 3332]). NfL distinguished Progressors from Non-Progressors with the highest accuracy (area under the curve 0.92, 90%/87% sensitivity/specificity, 86%/91% positive/negative predictive value, 88% accuracy). Non-Progressor Static tended to have higher T-tau and P-tau levels compared to Non-Progressor Revised Diagnoses. Conclusion: This study demonstrated strong diagnostic utility of CSF NfL to distinguish bvFTD from non-progressor variants, at baseline, with high accuracy, in a real-world clinical setting. This has important clinical implications, to improve outcomes for patients and clinicians facing this challenging clinical dilemma, healthcare services, and clinical trials. Further research is required to investigate heterogeneity within the non-progressor group and potential diagnostic algorithms, and prospective studies are underway assessing plasma NfL.
  •  
5.
  • Eratne, Dhamidhu, et al. (författare)
  • Plasma neurofilament light chain is increased in Niemann-Pick Type C but glial fibrillary acidic protein remains normal
  • 2024
  • Ingår i: Acta Neuropsychiatrica. - 0924-2708 .- 1601-5215. ; , s. 1-6
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Niemann-Pick Type C (NPC) is a genetic neurodegenerative lysosomal storage disorder commonly associated with psychiatric symptoms and delays to accurate diagnosis and treatment. This study investigated biomarker levels and diagnostic utility of plasma neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) in NPC compared to healthy controls. METHODS: Patients with NPC were recruited from a specialist assessment and management service. Data was available from an age and sex-matched healthy control group. NfL and GFAP were measured on Quanterix Simoa HD-X analysers and groups compared using generalised linear models. NfL levels were compared to, and percentiles derived from, recently developed NfL reference ranges. RESULTS: Plasma NfL was significantly elevated in 11 patients with NPC compared to 25 controls (mean 17.1pg/mL vs 7.4pg/mL, p<0.001), and reference ranges (all >98th percentile). NfL distinguished NPC from controls with high accuracy. GFAP levels were not elevated in NPC (66.6pg/mL vs 75.1pg/mL). DISCUSSION: The study adds important evidence on the potential diagnostic utility of plasma NfL in NPC, extends the literature of NfL as a diagnostic tool to differentiate neurodegenerative from primary psychiatric disorders, and adds support to the pathology in NPC primarily involving neuronal, particularly axonal, degeneration.
  •  
6.
  •  
7.
  • Kang, Matthew J.Y., et al. (författare)
  • Cerebrospinal fluid neurofilament light predicts longitudinal diagnostic change in patients with psychiatric and neurodegenerative disorders
  • 2023
  • Ingår i: Acta Neuropsychiatrica. - 0924-2708. ; 36:1, s. 17-28
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective People with neuropsychiatric symptoms often experience delay in accurate diagnosis. Although cerebrospinal fluid neurofilament light (CSF NfL) shows promise in distinguishing neurodegenerative disorders (ND) from psychiatric disorders (PSY), its accuracy in a diagnostically challenging cohort longitudinally is unknown. Methods We collected longitudinal diagnostic information (mean=36 months) from patients assessed at a neuropsychiatry service, categorising diagnoses as ND/mild cognitive impairment/other neurological disorders (ND/MCI/other), and PSY. We pre-specified NfL>582pg/mL as indicative of ND/MCI/other. Results Diagnostic category changed from initial to final diagnosis for 23% (49/212) of patients. NfL predicted the final diagnostic category for 92% (22/24) of these and predicted final diagnostic category overall (ND/MCI/other vs. PSY) in 88% (187/212), compared to 77% (163/212) with clinical assessment alone. Conclusions CSF NfL improved diagnostic accuracy, with potential to have led to earlier, accurate diagnosis in a real-world setting using a pre-specified cut-off, adding weight to translation of NfL into clinical practice.
  •  
8.
  • Semnani-Azad, Zhila, et al. (författare)
  • Plasma metabolite predictors of metabolic syndrome incidence and reversion
  • 2024
  • Ingår i: Metabolism: Clinical and Experimental. - 1532-8600 .- 0026-0495. ; 151
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Metabolic Syndrome (MetS) is a progressive pathophysiological state defined by a cluster of cardiometabolic traits. However, little is known about metabolites that may be predictors of MetS incidence or reversion. Our objective was to identify plasma metabolites associated with MetS incidence or MetS reversion. Methods: The study included 1468 participants without cardiovascular disease (CVD) but at high CVD risk at enrollment from two case-cohort studies nested within the PREvención con DIeta MEDiterránea (PREDIMED) study with baseline metabolomics data. MetS was defined in accordance with the harmonized International Diabetes Federation and the American Heart Association/National Heart, Lung, and Blood Institute criteria, which include meeting 3 or more thresholds for waist circumference, triglyceride, HDL cholesterol, blood pressure, and fasting blood glucose. MetS incidence was defined by not having MetS at baseline but meeting the MetS criteria at a follow-up visit. MetS reversion was defined by MetS at baseline but not meeting MetS criteria at a follow-up visit. Plasma metabolome was profiled by LC-MS. Multivariable-adjusted Cox regression models and elastic net regularized regressions were used to assess the association of 385 annotated metabolites with MetS incidence and MetS reversion after adjusting for potential risk factors. Results: Of the 603 participants without baseline MetS, 298 developed MetS over the median 4.8-year follow-up. Of the 865 participants with baseline MetS, 285 experienced MetS reversion. A total of 103 and 88 individual metabolites were associated with MetS incidence and MetS reversion, respectively, after adjusting for confounders and false discovery rate correction. A metabolomic signature comprised of 77 metabolites was robustly associated with MetS incidence (HR: 1.56 (95 % CI: 1.33–1.83)), and a metabolomic signature of 83 metabolites associated with MetS reversion (HR: 1.44 (95 % CI: 1.25–1.67)), both p < 0.001. The MetS incidence and reversion signatures included several lipids (mainly glycerolipids and glycerophospholipids) and branched-chain amino acids. Conclusion: We identified unique metabolomic signatures, primarily comprised of lipids (including glycolipids and glycerophospholipids) and branched-chain amino acids robustly associated with MetS incidence; and several amino acids and glycerophospholipids associated with MetS reversion. These signatures provide novel insights on potential distinct mechanisms underlying the conditions leading to the incidence or reversion of MetS.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy