SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dent W.R.F.) "

Sökning: WFRF:(Dent W.R.F.)

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Acke, B., et al. (författare)
  • Herschel images of Fomalhaut An extrasolar Kuiper belt at the height of its dynamical activity
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 540, s. Article Number: A125 -
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Fomalhaut is a young (2 +/- 1 x 10(8) years), nearby (7.7 pc), 2 M-circle dot star that is suspected to harbor an infant planetary system, interspersed with one or more belts of dusty debris. Aims. We present far-infrared images obtained with the Herschel Space Observatory with an angular resolution between 5.7 '' and 36.7 '' at wavelengths between 70 mu m and 500 mu m. The images show the main debris belt in great detail. Even at high spatial resolution, the belt appears smooth. The region in between the belt and the central star is not devoid of material; thermal emission is observed here as well. Also at the location of the star, excess emission is detected. We aim to construct a consistent image of the Fomalhaut system. Methods. We use a dynamical model together with radiative-transfer tools to derive the parameters of the debris disk. We include detailed models of the interaction of the dust grains with radiation, for both the radiation pressure and the temperature determination. Comparing these models to the spatially resolved temperature information contained in the images allows us to place strong constraints on the presence of grains that will be blown out of the system by radiation pressure. We use this to derive the dynamical parameters of the system. Results. The appearance of the belt points toward a remarkably active system in which dust grains are produced at a very high rate by a collisional cascade in a narrow region filled with dynamically excited planetesimals. Dust particles with sizes below the blow-out size are abundantly present. The equivalent of 2000 one-km-sized comets are destroyed every day, out of a cometary reservoir amounting to 110 Earth masses. From comparison of their scattering and thermal properties, we find evidence that the dust grains are fluffy aggregates, which indicates a cometary origin. The excess emission at the location of the star may be produced by hot dust with a range of temperatures, but may also be due to gaseous free-free emission from a stellar wind.
  •  
2.
  • Brandeker, Alexis, et al. (författare)
  • Herschel detects oxygen in the beta Pictoris debris disk
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 591
  • Tidskriftsartikel (refereegranskat)abstract
    • The young star beta Pictoris is well known for its dusty debris disk produced through collisional grinding of planetesimals, kilometre-sized bodies in orbit around the star. In addition to dust, small amounts of gas are also known to orbit the star; this gas is likely the result of vaporisation of violently colliding dust grains. The disk is seen edge on and from previous absorption spectroscopy we know that the gas is very rich in carbon relative to other elements. The oxygen content has been more difficult to assess, however, with early estimates finding very little oxygen in the gas at a C/O ratio that is 20x higher than the cosmic value. A C/O ratio that high is difficult to explain and would have far-reaching consequences for planet formation. Here we report on observations by the far-infrared space telescope Herschel, using PACS, of emission lines from ionised carbon and neutral oxygen. The detected emission from C+ is consistent with that previously reported observed by the HIFI instrument on Herschel, while the emission from O is hard to explain without assuming a higher density region in the disk, perhaps in the shape of a clump or a dense torus required to sufficiently excite the O atoms. A possible scenario is that the C/O gas is produced by the same process responsible for the CO clump recently observed by the Atacama Large Millimeter/submillimeter Array in the disk and that the redistribution of the gas takes longer than previously assumed. A more detailed estimate of the C/O ratio and the mass of O will have to await better constraints on the C/O gas spatial distribution.
  •  
3.
  • Cataldi, Gianni, et al. (författare)
  • ALMA Resolves C i Emission from the β Pictoris Debris Disk
  • 2018
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 861:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The debris disk around β Pictoris is known to contain gas. Previous ALMA observations revealed a CO belt at ∼85 au with a distinct clump, interpreted as a location of enhanced gas production. Photodissociation converts CO into C and O within ∼50 a. We resolve C i emission at 492 GHz using ALMA and study its spatial distribution. C i shows the same clump as seen for CO. This is surprising, as C is expected to quickly spread in azimuth. We derive a low C mass (between 5 ×10-4and 3.1 ×10-3), indicating that gas production started only recently (within ∼5000 a). No evidence is seen for an atomic accretion disk inward of the CO belt, perhaps because the gas did not yet have time to spread radially. The fact that C and CO share the same asymmetry argues against a previously proposed scenario where the clump is due to an outward-migrating planet trapping planetesimals in a resonance, nor can the observations be explained by an eccentric planetesimal belt secularly forced by a planet. Instead, we suggest that the dust and gas disks should be eccentric. Such a configuration, we further speculate, might be produced by a recent tidal disruption event. Assuming that the disrupted body has had a CO mass fraction of 10%, its total mass would be 3 MMoon.
  •  
4.
  • Cataldi, Gianni, et al. (författare)
  • Constraints on the gas content of the Fomalhaut debris belt Can gas-dust interactions explain the belt's morphology?
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 574
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The 440 Myr old main-sequence A-star Fomalhaut is surrounded by an eccentric debris belt with sharp edges. This sort of a morphology is usually attributed to planetary perturbations, but the orbit of the only planetary candidate detected so far, Fomalhaut b, is too eccentric to efficiently shape the belt. Alternative models that could account for the morphology without invoking a planet are stellar encounters and gas-dust interactions. Aims. We aim to test the possibility of gas-dust interactions as the origin of the observed morphology by putting upper limits on the total gas content of the Fomalhaut belt. Methods. We derive upper limits on the CII 158 mu m and 01 63 pint emission by using non detections from the Photocletector Array Camera and Spectrometer (PACS) onboard the Herschel Space Observatory. Line fluxes are converted into total gas mass using the non-local thermodynamic equilibrium (non-LTE) code RADEX. We consider two different cases for the elemental abundances of the gas: solar abundances and abundances similar to those observed for the gas in the beta Pictoris debris disc. Results. The gas mass is shown to be below the millimetre dust mass by a factor of at least similar to 3 (for solar abundances) respectively similar to 300 (for beta Pic-like abundances). Conclusions. The lack of gas co-spatial with the dust implies that gas-dust interactions cannot efficiently shape the Fomalhaut debris belt. The morphology is therefore more likely due to a yet unseen planet (Fomalhaut c) or stellar encounters.
  •  
5.
  • Dent, W. R. F., et al. (författare)
  • GASPS-A Herschel Survey of Gas and Dust in Protoplanetary Disks: Summary and Initial Statistics
  • 2013
  • Ingår i: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 125:927, s. 477-505
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe a large-scale far-infrared line and continuum survey of protoplanetary disk through to young debris disk systems carried out using the ACS instrument on the Herschel Space Observatory. This Open Time Key program, known as GASPS (Gas Survey of Protoplanetary Systems), targeted similar to 250 young stars in narrow wavelength regions covering the [OI] fine structure line at 63 mu m the brightest far-infrared line in such objects. A subset of the brightest targets were also surveyed in [OI]145 mu m, [CII] at 157 mu m, as well as several transitions of H2O and high-excitation CO lines at selected wavelengths between 78 and 180 mu m. Additionally, GASPS included continuum photometry at 70, 100 and 160 mu m, around the peak of the dust emission. The targets were SED Class II-III T Tauri stars and debris disks from seven nearby young associations, along with a comparable sample of isolated Herbig AeBe stars. The aim was to study the global gas and dust content in a wide sample of circumstellar disks, combining the results with models in a systematic way. In this overview paper we review the scientific aims, target selection and observing strategy of the program. We summarise some of the initial results, showing line identifications, listing the detections, and giving a first statistical study of line detectability. The [OI] line at 63 mu m was the brightest line seen in almost all objects, by a factor of similar to 10. Overall [OI]63 mu m detection rates were 49%, with 100% of HAeBe stars and 43% of T Tauri stars detected. A comparison with published disk dust masses (derived mainly from sub-mm continuum, assuming standard values of the mm mass opacity) shows a dust mass threshold for [OI] 63 mu m detection of similar to 10(-5) M-circle dot. Normalising to a distance of 140 pc, 84% of objects with dust masses >= 10(-5) M-circle dot can be detected in this line in the present survey; 32% of those of mass 10(-6)-10(-5) M-circle dot, and only a very small number of unusual objects with lower masses can be detected. This is consistent with models with a moderate UV excess and disk flaring. For a given disk mass, [OI] detectability is lower for M stars compared with earlier spectral types. Both the continuum and line emission was, in most systems, spatially and spectrally unresolved and centred on the star, suggesting that emission in most cases was from the disk. Approximately 10 objects showed resolved emission, most likely from outflows. In the GASPS sample, [OI] detection rates in T Tauri associations in the 0.3-4 Myr age range were similar to 50%. For each association in the 5-20 Myr age range, similar to 2 stars remain detectable in [OI]63 mu m, and no systems were detected in associations with age >20 Myr. Comparing with the total number of young stars in each association, and assuming a ISM-like gas/dust ratio, this indicates that similar to 18% of stars retain a gas-rich disk of total mass similar to 1 M-Jupiter for 1-4 Myr, 1-7% keep such disks for 5-10 Myr, but none are detected beyond 10-20 Myr. The brightest [OI] objects from GASPS were also observed in [OI]145 mu m, [CII]157 mu m and CO J = 18 - 17, with detection rates of 20-40%. Detection of the [CII] line was not correlated with disk mass, suggesting it arises more commonly from a compact remnant envelope.
  •  
6.
  • Fomalont, E. B., et al. (författare)
  • THE 2014 ALMA LONG BASELINE CAMPAIGN: AN OVERVIEW
  • 2015
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 808:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A major goal of the Atacama Large Millimeter/submillimeter Array (ALMA) is to make accurate images with resolutions of tens of milliarcseconds, which at submillimeter (submm) wavelengths requires baselines up to similar to 15 km. To develop and test this capability, a Long Baseline Campaign (LBC) was carried out from 2014 September to late November, culminating in end-to-end observations, calibrations, and imaging of selected Science Verification (SV) targets. This paper presents an overview of the campaign and its main results, including an investigation of the short-term coherence properties and systematic phase errors over the long baselines at the ALMA site, a summary of the SV targets and observations, and recommendations for science observing strategies at long baselines. Deep ALMA images of the quasar 3C 138 at 97 and 241 GHz are also compared to VLA 43 GHz results, demonstrating an agreement at a level of a few percent. As a result of the extensive program of LBC testing, the highly successful SV imaging at long baselines achieved angular resolutions as fine as 19 mas at similar to 350 GHz. Observing with ALMA on baselines of up to 15 km is now possible, and opens up new parameter space for submm astronomy.
  •  
7.
  • Greaves, J. S., et al. (författare)
  • EXTREME CONDITIONS IN A CLOSE ANALOG TO THE YOUNG SOLAR SYSTEM : HERSCHEL OBSERVATIONS OF is an element of ERIDANI
  • 2014
  • Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 791:1, s. L11-
  • Tidskriftsartikel (refereegranskat)abstract
    • Far-infrared Herschel images of the is an element of Eridani system, seen at a fifth of the Sun's present age, resolve two belts of debris emission. Fits to the 160 mu m PACS image yield radial spans for these belts of 12-16 and 54-68 AU. The south end of the outer belt is approximate to 10% brighter than the north end in the PACS+SPIRE images at 160, 250, and 350 mu m, indicating a pericenter glow attributable to a planet c From this asymmetry and an upper bound on the offset of the belt center, this second planet should be mildly eccentric (e(c) approximate to 0.03-0.3). Compared to the asteroid and Kuiper Belts of the young Sun, the is an element of Eri belts are intermediate in brightness and more similar to each other, with up to 20 km sized collisional fragments in the inner belt totaling approximate to 5% of an Earth mass. This reservoir may feed the hot dust close to the star and could send many impactors through the Habitable Zone, especially if it is being perturbed by the suspected planet is an element of Eri b, at semi-major axis approximate to 3 AU.
  •  
8.
  • Greaves, J. S., et al. (författare)
  • Extreme Conditions in a Close Analog to the Young Solar System: Herschel Observations of ∈ Eridani
  • 2014
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 791:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Far-infrared Herschel images of the is an element of Eridani system, seen at a fifth of the Sun's present age, resolve two belts of debris emission. Fits to the 160 mu m PACS image yield radial spans for these belts of 12-16 and 54-68 AU. The south end of the outer belt is approximate to 10% brighter than the north end in the PACS+SPIRE images at 160, 250, and 350 mu m, indicating a pericenter glow attributable to a planet "c" From this asymmetry and an upper bound on the offset of the belt center, this second planet should be mildly eccentric (e(c) approximate to 0.03-0.3). Compared to the asteroid and Kuiper Belts of the young Sun, the is an element of Eri belts are intermediate in brightness and more similar to each other, with up to 20 km sized collisional fragments in the inner belt totaling approximate to 5% of an Earth mass. This reservoir may feed the hot dust close to the star and could send many impactors through the Habitable Zone, especially if it is being perturbed by the suspected planet is an element of Eri b, at semi-major axis approximate to 3 AU.
  •  
9.
  • Mathews, G. S., et al. (författare)
  • GAS in Protoplanetary Systems (GASPS) I. First results
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518:Article Number: L127
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Circumstellar discs are ubiquitous around young stars, but rapidly dissipate their gas and dust on timescales of a few Myr. The Herschel Space Observatory allows for the study of the warm disc atmosphere, using far-infrared spectroscopy to measure gas content and excitation conditions, and far-IR photometry to constrain the dust distribution. Aims. We aim to detect and characterize the gas content of circumstellar discs in four targets as part of the Herschel science demonstration phase. Methods. We carried out sensitive medium resolution spectroscopy and high sensitivity photometry at gimel similar to 60-190 mu m using the Photodetector Array Camera and Spectrometer instrument on the Herschel Space Observatory. Results. We detect [OI] 63 mu m emission from the young stars HD 169142, TW Hydrae, and RECX 15, but not HD 181327. No other lines, including [CII] 158 and [OI] 145, are significantly detected. All four stars are detected in photometry at 70 and 160 mu m. Extensive models are presented in associated papers.
  •  
10.
  • Matthews, Brenda C., et al. (författare)
  • THE AU MIC DEBRIS DISK : FAR-INFRARED AND SUBMILLIMETER RESOLVED IMAGING
  • 2015
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 811:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present far-infrared and submillimeter maps from the Herschel Space Observatory and the James Clerk Maxwell Telescope of the debris disk host star AU Microscopii. Disk emission is detected at 70, 160, 250, 350, 450, 500, and 850 mu m. The disk is resolved at 70, 160, and 450 mu m. In addition to the planetesimal belt, we detect thermal emission from AU Mic's halo for the first time. In contrast to the scattered light images, no asymmetries are evident in the disk. The fractional luminosity of the disk is 3.9 x 10(-4) and its milimeter-grain dust mass is 0.01 M-circle dot (+/- 20%). We create a simple spatial model that reconciles the disk spectral energy distribution as a blackbody of 53 +/- 2K (a composite of 39 and 50 K components) and the presence of small (non-blackbody) grains which populate the extended halo. The best-fit model is consistent with the birth ring model explored in earlier works, i.e., an edge-on dust belt extending from 8.8 to 40 AU, but with an additional halo component with an r(-1.5) surface density profile extending to the limits of sensitivity (140 AU). We confirm that AU Mic does not exert enough radiation force to blow out grains. For stellar mass-loss rates of 10-100 times solar, compact (zero porosity) grains can only be removed if they are very small; consistently with previous work, if the porosity is 0.9, then grains approaching 0.1 mu m can be removed via corpuscular forces (i.e., the stellar wind).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy