SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Denys Mark) "

Sökning: WFRF:(Denys Mark)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Pasquini, Luca, et al. (författare)
  • Magnesium- and intermetallic alloys-based hydrides for energy storage : modelling, synthesis and properties
  • 2022
  • Ingår i: Progress in Energy. - : Institute of Physics Publishing (IOPP). - 2516-1083. ; 4:3
  • Forskningsöversikt (refereegranskat)abstract
    • Hydrides based on magnesium and intermetallic compounds provide a viable solution to the challenge of energy storage from renewable sources, thanks to their ability to absorb and desorb hydrogen in a reversible way with a proper tuning of pressure and temperature conditions. Therefore, they are expected to play an important role in the clean energy transition and in the deployment of hydrogen as an efficient energy vector. This review, by experts of Task 40 'Energy Storage and Conversion based on Hydrogen' of the Hydrogen Technology Collaboration Programme of the International Energy Agency, reports on the latest activities of the working group 'Magnesium- and Intermetallic alloys-based Hydrides for Energy Storage'. The following topics are covered by the review: multiscale modelling of hydrides and hydrogen sorption mechanisms; synthesis and processing techniques; catalysts for hydrogen sorption in Mg; Mg-based nanostructures and new compounds; hydrides based on intermetallic TiFe alloys, high entropy alloys, Laves phases, and Pd-containing alloys. Finally, an outlook is presented on current worldwide investments and future research directions for hydrogen-based energy storage.
  •  
2.
  • Dwarapudi, Srinivas, et al. (författare)
  • Development of cold bonded chromite pellets for ferrochrome production in submerged arc furnace
  • 2013
  • Ingår i: ISIJ International. - : Iron and Steel Institute of Japan. - 0915-1559 .- 1347-5460. ; 53:1, s. 9-17
  • Tidskriftsartikel (refereegranskat)abstract
    • Pelletizing of Indian chromite ores is more challenging due to their high refractory nature. High Cr/Fe ratio and high MgO content in these ores demand high firing temperatures and longer firing cycles but often result in low strength fired pellets. Aim of this study was to develop cold bonded chromite pellets for smelting in submerged arc furnace (SAF) from chromite fines using suitable binder that induce less gangue into the pellets but cures quickly. Different binders were studied through laboratory pelletizing experiments for their suitability for cold bonding the pellets. As result, a composite binder comprising dextrin and bentonite, was found to be suitable and pellets made from the same were tested for their low and high temperature behavior. Electron and optical micro structural studies with image analysis were carried out to find out the type and amount of phases formed in the chromite pellets during high temperature reduction. High temperature reduction studies revealed that pellets were resistant to disintegration up to 1200°C. Pilot scale arc furnace trials were also carried out to compare the performance of cold bonded pellets (CBPs) with sintered chromite pellets and found that for a constant power input, smelting rate was faster for CBPs than sintered pellets. Loss of Cr to slag was reduced in case of cold bonded pellets usage.
  •  
3.
  • Hirscher, Michael, et al. (författare)
  • Materials for hydrogen-based energy storage - past, recent progress and future outlook
  • 2020
  • Ingår i: Journal of Alloys and Compounds. - : Elsevier BV. - 0925-8388 .- 1873-4669. ; 827
  • Tidskriftsartikel (refereegranskat)abstract
    • Globally, the accelerating use of renewable energy sources, enabled by increased efficiencies and reduced costs, and driven by the need to mitigate the effects of climate change, has significantly increased research in the areas of renewable energy production, storage, distribution and end-use. Central to this discussion is the use of hydrogen, as a clean, efficient energy vector for energy storage. This review, by experts of Task 32, Hydrogen-based Energy Storage of the International Energy Agency, Hydrogen TCP, reports on the development over the last 6 years of hydrogen storage materials, methods and techniques, including electrochemical and thermal storage systems. An overview is given on the background to the various methods, the current state of development and the future prospects. The following areas are covered; porous materials, liquid hydrogen carriers, complex hydrides, intermetallic hydrides, electrochemical storage of energy, thermal energy storage, hydrogen energy systems and an outlook is presented for future prospects and research on hydrogen-based energy storage.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy