SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Desideri U.) "

Sökning: WFRF:(Desideri U.)

  • Resultat 1-10 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tran, K. B., et al. (författare)
  • The global burden of cancer attributable to risk factors, 2010-19: a systematic analysis for the Global Burden of Disease Study 2019
  • 2022
  • Ingår i: Lancet. - 0140-6736. ; 400:10352, s. 563-591
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.
  •  
2.
  • Alvarez, E. M., et al. (författare)
  • The global burden of adolescent and young adult cancer in 2019: a systematic analysis for the Global Burden of Disease Study 2019
  • 2022
  • Ingår i: Lancet Oncology. - : Elsevier BV. - 1470-2045. ; 23:1, s. 27-52
  • Tidskriftsartikel (refereegranskat)abstract
    • Background In estimating the global burden of cancer, adolescents and young adults with cancer are often overlooked, despite being a distinct subgroup with unique epidemiology, clinical care needs, and societal impact. Comprehensive estimates of the global cancer burden in adolescents and young adults (aged 15-39 years) are lacking. To address this gap, we analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, with a focus on the outcome of disability-adjusted life-years (DALYs), to inform global cancer control measures in adolescents and young adults. Methods Using the GBD 2019 methodology, international mortality data were collected from vital registration systems, verbal autopsies, and population-based cancer registry inputs modelled with mortality-to-incidence ratios (MIRs). Incidence was computed with mortality estimates and corresponding MIRs. Prevalence estimates were calculated using modelled survival and multiplied by disability weights to obtain years lived with disability (YLDs). Years of life lost (YLLs) were calculated as age-specific cancer deaths multiplied by the standard life expectancy at the age of death. The main outcome was DALYs (the sum of YLLs and YLDs). Estimates were presented globally and by Socio-demographic Index (SDI) quintiles (countries ranked and divided into five equal SDI groups), and all estimates were presented with corresponding 95% uncertainty intervals (UIs). For this analysis, we used the age range of 15-39 years to define adolescents and young adults. Findings There were 1.19 million (95% UI 1.11-1.28) incident cancer cases and 396 000 (370 000-425 000) deaths due to cancer among people aged 15-39 years worldwide in 2019. The highest age-standardised incidence rates occurred in high SDI (59.6 [54.5-65.7] per 100 000 person-years) and high-middle SDI countries (53.2 [48.8-57.9] per 100 000 person-years), while the highest age-standardised mortality rates were in low-middle SDI (14.2 [12.9-15.6] per 100 000 person-years) and middle SDI (13.6 [12.6-14.8] per 100 000 person-years) countries. In 2019, adolescent and young adult cancers contributed 23.5 million (21.9-25.2) DALYs to the global burden of disease, of which 2.7% (1.9-3.6) came from YLDs and 97.3% (96.4-98.1) from YLLs. Cancer was the fourth leading cause of death and tenth leading cause of DALYs in adolescents and young adults globally. Interpretation Adolescent and young adult cancers contributed substantially to the overall adolescent and young adult disease burden globally in 2019. These results provide new insights into the distribution and magnitude of the adolescent and young adult cancer burden around the world. With notable differences observed across SDI settings, these estimates can inform global and country-level cancer control efforts. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.
  •  
3.
  • Bryazka, D., et al. (författare)
  • Population-level risks of alcohol consumption by amount, geography, age, sex, and year: a systematic analysis for the Global Burden of Disease Study 2020
  • 2022
  • Ingår i: Lancet. - 0140-6736. ; 400:10347, s. 185-235
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The health risks associated with moderate alcohol consumption continue to be debated. Small amounts of alcohol might lower the risk of some health outcomes but increase the risk of others, suggesting that the overall risk depends, in part, on background disease rates, which vary by region, age, sex, and year. Methods For this analysis, we constructed burden-weighted dose-response relative risk curves across 22 health outcomes to estimate the theoretical minimum risk exposure level (TMREL) and non-drinker equivalence (NDE), the consumption level at which the health risk is equivalent to that of a non-drinker, using disease rates from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2020 for 21 regions, including 204 countries and territories, by 5-year age group, sex, and year for individuals aged 15-95 years and older from 1990 to 2020. Based on the NDE, we quantified the population consuming harmful amounts of alcohol. Findings The burden-weighted relative risk curves for alcohol use varied by region and age. Among individuals aged 15-39 years in 2020, the TMREL varied between 0 (95% uncertainty interval 0-0) and 0.603 (0.400-1.00) standard drinks per day, and the NDE varied between 0.002 (0-0) and 1.75 (0.698-4.30) standard drinks per day. Among individuals aged 40 years and older, the burden-weighted relative risk curve was J-shaped for all regions, with a 2020 TMREL that ranged from 0.114 (0-0.403) to 1.87 (0.500-3.30) standard drinks per day and an NDE that ranged between 0.193 (0-0.900) and 6.94 (3.40-8.30) standard drinks per day. Among individuals consuming harmful amounts of alcohol in 2020, 59.1% (54.3-65.4) were aged 15-39 years and 76.9% (7.0-81.3) were male. Interpretation There is strong evidence to support recommendations on alcohol consumption varying by age and location. Stronger interventions, particularly those tailored towards younger individuals, are needed to reduce the substantial global health loss attributable to alcohol. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd.
  •  
4.
  •  
5.
  •  
6.
  • Kocarnik, J. M., et al. (författare)
  • Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life Years for 29 Cancer Groups From 2010 to 2019 A Systematic Analysis for the Global Burden of Disease Study 2019
  • 2022
  • Ingår i: Jama Oncology. - : American Medical Association (AMA). - 2374-2437 .- 2374-2445. ; 8:3, s. 420-488
  • Tidskriftsartikel (refereegranskat)abstract
    • IMPORTANCE The Global Burden of Diseases, Injuries, and Risk Factors Study 2019 (GBD 2019) provided systematic estimates of incidence, morbidity, and mortality to inform local and international efforts toward reducing cancer burden. OBJECTIVE To estimate cancer burden and trends globally for 204 countries and territories and by Sociodemographic Index (SDI) quintiles from 2010 to 2019. EVIDENCE REVIEW The GBD 2019 estimation methods were used to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life years (DALYs) in 2019 and over the past decade. Estimates are also provided by quintiles of the SDI, a composite measure of educational attainment, income per capita, and total fertility rate for those younger than 25 years. Estimates include 95% uncertainty intervals (UIs). FINDINGS In 2019, there were an estimated 23.6 million (95% UI, 22.2-24.9 million) new cancer cases (17.2 million when excluding nonmelanoma skin cancer) and 10.0 million (95% UI, 9.36-10.6 million) cancer deaths globally, with an estimated 250 million (235-264 million) DALYs due to cancer. Since 2010, these represented a 26.3%(95% UI, 20.3%-32.3%) increase in new cases, a 20.9%(95% UI, 14.2%-27.6%) increase in deaths, and a 16.0% (95% UI, 9.3%-22.8%) increase in DALYs. Among 22 groups of diseases and injuries in the GBD 2019 study, cancer was second only to cardiovascular diseases for the number of deaths, years of life lost, and DALYs globally in 2019. Cancer burden differed across SDI quintiles. The proportion of years lived with disability that contributed to DALYs increased with SDI, ranging from 1.4%(1.1%-1.8%) in the low SDI quintile to 5.7%(4.2%-7.1%) in the high SDI quintile. While the high SDI quintile had the highest number of new cases in 2019, the middle SDI quintile had the highest number of cancer deaths and YDALYs. From 2010 to 2019, the largest percentage increase in the numbers of cases and deaths occurred in the low and low-middle SDI quintiles. CONCLUSIONS AND RELEVANCE The results of this systematic analysis suggest that the global burden of cancer is substantial and growing, with burden differing by SDI. These results provide comprehensive and comparable estimates that can potentially inform efforts toward equitable cancer control around the world.
  •  
7.
  •  
8.
  • Desideri, U., et al. (författare)
  • Analysis and comparison between a concentrating solar and a photovoltaic power plant
  • 2014
  • Ingår i: Applied Energy. - : Elsevier BV. - 0306-2619 .- 1872-9118. ; 113, s. 422-433
  • Tidskriftsartikel (refereegranskat)abstract
    • Solar energy is a source, which can be exploited in two main ways to generate power: direct conversion into electric energy using photovoltaic panels and by means of a thermodynamic cycle. In both cases the amount of energy, which can be converted, is changing daily and seasonally, causing a discontinuous electricity production. In order to limit this drawback, concentrated solar power plants (CSP) and photovoltaic plants (PV) can be equipped with a storage system that can be configured not only for covering peak-loads but also for the base-load after the sunset or before the sunrise. In CSP plants it is the sun's thermal energy to be stored, whereas in PV applications it is the electrical energy to be stored in batteries, although this is not economically and environmentally feasible in large-scale power plants.The main aim of this paper is to study the performance of concentrated solar power plants equipped with molten salts thermal storage to cover a base load of 3MWel. In order to verify the possibility of storing effectively the thermal energy and to design a plant for base load operation, two locations were chosen for the study: Gela in southern Italy, and Luxor in Egypt. The electricity production of the CSP facilities has been analyzed and then compared with the electricity production of PV plants. Two different comparisons were done, one by sizing the PV plant to provide the same peak power and one using the same collectors surface. This paper has also highlighted some important issues in site selection and in design criteria for CSP plants used for base load operation.The high variability of the direct normal radiation during the year in southern Italy may cause several problems in CSP facilities, mainly related to the wide range of energy input from the sun. The more uniform and higher values of the solar radiation in the Egyptian location mitigates this problem and allows achieving higher efficiencies than in southern Italy. In most cases the electricity produced by the CSP plant is higher than that produced by a similar PV plant, because the presence of the storage system guarantees the continuity of electricity production even without solar radiation. An economic analysis based on the estimation of the levelized electricity cost (LEC) for both CSP and PV power plants located both in south of Italy and Egypt was carried out in order to investigate which is the most cost effective solution. In all the cases considered, the CSP facilities resulted the best option in terms of cost of electricity produced due to the continuity of energy production during the night hours.
  •  
9.
  •  
10.
  • Gul, E., et al. (författare)
  • Perspectives and state of the art in producing solar fuels and chemicals from CO2
  • 2021
  • Ingår i: Advanced Technology for the Conversion of Waste into Fuels and Chemicals: Volume 2: Chemical Processes. - : Elsevier. - 9780323901505 ; , s. 181-219
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Solar Fuels and chemicals from CO2 can be produced through two main reactions: one is CO2 photoreduction, using different catalysts and different reducing agents; the other is CO2 fixation, which is usually performed through natural photosynthesis. The research nowadays is directed on the production of fuels and chemicals with one or two atoms of carbon, for example CH4, CO, HCOOH, HCHO, CH3OH, C2H5OH, etc. The chapter aims at comparing natural photosynthesis processes and reactions with artificial photosynthesis. After taking into consideration the natural photosynthetic process, the chapter focuses on heterogeneous and homogeneous photocatalysis. Heterogeneous catalysis can be performed with semiconductors and powder catalysts. Special attention is given to TiO2 as a promising photocatalyst. Homogeneous photocatalysts are usually represented by molecular catalysts, which are dissolved in water or another solvent. Usually, homogeneous photocatalysis is performed in complex systems which are composed by: a light harvesting unit (LHU) (i.e. the photosensitizer); one catalytic site for the oxidation process, where the electrons are supplied by a sacrificial donor; one reduction site, where the electrons are transmitted to CO2. Finally, even more complex systems are represented by those based on photoelectrocatalysis. These have the main advantage to separate the oxidation and reduction reactions at the two different electrodes of the system. In principle photoelectrochemical cells can be a way to mimic artificially the working principle of natural photosynthesis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy