SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Desmedt C.) "

Sökning: WFRF:(Desmedt C.)

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Campbell, PJ, et al. (författare)
  • Pan-cancer analysis of whole genomes
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 578:7793, s. 82-
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale1–3. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4–5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter4; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation5,6; analyses timings and patterns of tumour evolution7; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity8,9; and evaluates a range of more-specialized features of cancer genomes8,10–18.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Nijs, Jo, et al. (författare)
  • Towards precision pain medicine for pain after cancer: the Cancer Pain Phenotyping Network multidisciplinary international guidelines for pain phenotyping using nociplastic pain criteria
  • 2023
  • Ingår i: British Journal of Anaesthesia. - : Elsevier BV. - 0007-0912. ; 130:5, s. 611-621
  • Tidskriftsartikel (refereegranskat)abstract
    • Pain after cancer remains underestimated and undertreated. Precision medicine is a recent concept that refers to the ability to classify patients into subgroups that differ in their susceptibility to, biology, or prognosis of a particular disease, or in their response to a specific treatment, and thus to tailor treatment to the individual patient characteristics. Applying this to pain after cancer, the ability to classify post-cancer pain into the three major pain phenotypes (i.e. nociceptive, neuropathic, and nociplastic pain) and tailor pain treatment accordingly, is an emerging issue. This is especially relevant because available evidence suggests that nociplastic pain is present in an important subgroup of those patients experiencing post-cancer pain. The 2021 International Association for the Study of Pain (IASP) clinical criteria and grading system for nociplastic pain account for the need to identify and correctly classify patients according to the pain phenotype early in their treatment. These criteria are an important step towards precision pain medicine with great potential for the field of clinical oncology. Within this framework, the Cancer Pain Phenotyping (CANPPHE) Network, an international and interdisciplinary group of oncology clinicians and researchers from seven countries, applied the 2021 IASP clinical criteria for nociplastic pain to the growing population of those experiencing post-cancer pain. A manual is provided to allow clinicians to differentiate between predominant nociceptive, neuropathic, or nociplastic pain after cancer. A seven-step diagnostic approach is presented and illustrated using cases to enhance understanding and encourage effective implementation of this approach in clinical practice.
  •  
7.
  • Alexandrov, Ludmil B., et al. (författare)
  • Signatures of mutational processes in human cancer
  • 2013
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 500:7463, s. 415-421
  • Tidskriftsartikel (refereegranskat)abstract
    • All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single cancer class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, 'kataegis', is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer, with potential implications for understanding of cancer aetiology, prevention and therapy.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy