SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Deutscher N. M.) "

Sökning: WFRF:(Deutscher N. M.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • de Laat, A. T. J., et al. (författare)
  • Validation of five years (2003-2007) of SCIAMACHY CO total column measurements using ground-based spectrometer observations
  • 2010
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 3:5, s. 1457-1471
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents a validation study of SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) carbon monoxide (CO) total column measurements from the Iterative Maximum Likelihood Method (IMLM) algorithm using ground-based spectrometer observations from twenty surface stations for the five year time period of 2003-2007. Overall we find a good agreement between SCIAMACHY and ground-based observations for both mean values as well as seasonal variations. For high-latitude Northern Hemisphere stations absolute differences between SCIAMACHY and ground-based measurements are close to or fall within the SCIAMACHY CO 2 sigma precision of 0.2 x 10(18) molecules/cm(2) (similar to 10%) indicating that SCIAMACHY can observe CO accurately at high Northern Hemisphere latitudes. For Northern Hemisphere mid-latitude stations the validation is complicated due to the vicinity of emission sources for almost all stations, leading to higher ground-based measurements compared to SCIAMACHY CO within its typical sampling area of 8 degrees x 8 degrees. Comparisons with Northern Hemisphere mountain stations are hampered by elevation effects. After accounting for these effects, the validation provides satisfactory results. At Southern Hemisphere mid-to high latitudes SCIAMACHY is systematically lower than the ground-based measurements for 2003 and 2004, but for 2005 and later years the differences between SCIAMACHY and ground-based measurements fall within the SCIAMACHY precision. The 2003-2004 bias is consistent with previously reported results although its origin remains under investigation. No other systematic spatial or temporal biases could be identified based on the validation presented in this paper. Validation results are robust with regard to the choices of the instrument-noise error filter, sampling area, and time averaging required for the validation of SCIAMACHY CO total column measurements. Finally, our results show that the spatial coverage of the ground-based measurements available for the validation of the 2003-2007 SCIAMACHY CO columns is sub-optimal for validation purposes, and that the recent and ongoing expansion of the ground-based network by carefully selecting new locations may be very beneficial for SCIAMACHY CO and other satellite trace gas measurements validation efforts.
  •  
2.
  • Sha, Mahesh Kumar, et al. (författare)
  • Validation of methane and carbon monoxide from Sentinel-5 Precursor using TCCON and NDACC-IRWG stations
  • 2021
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 14:9, s. 6249-6304
  • Tidskriftsartikel (refereegranskat)abstract
    • The Sentinel-5 Precursor (S5P) mission with the TROPOspheric Monitoring Instrument (TROPOMI) on board has been measuring solar radiation backscattered by the Earth's atmosphere and surface since its launch on 13 October 2017. In this paper, we present for the first time the S5P operational methane (CH4) and carbon monoxide (CO) products' validation results covering a period of about 3 years using global Total Carbon Column Observing Network (TCCON) and Infrared Working Group of the Network for the Detection of Atmospheric Composition Change (NDACC-IRWG) network data, accounting for a priori alignment and smoothing uncertainties in the validation, and testing the sensitivity of validation results towards the application of advanced co-location criteria. We found that the S5P standard and bias-corrected CH4 data over land surface for the recommended quality filtering fulfil the mission requirements. The systematic difference of the bias-corrected total column-averaged dry air mole fraction of methane (XCH4) data with respect to TCCON data is -0.26 +/- 0.56 % in comparison to -0.68 +/- 0.74 % for the standard XCH4 data, with a correlation of 0.6 for most stations. The bias shows a seasonal dependence. We found that the S5P CO data over all surfaces for the recommended quality filtering generally fulfil the missions requirements, with a few exceptions, which are mostly due to co-location mismatches and limited availability of data. The systematic difference between the S5P total column-averaged dry air mole fraction of carbon monoxide (XCO) and the TCCON data is on average 9.22 +/- 3.45 % (standard TCCON XCO) and 2.45 +/- 3.38 % (unscaled TCCON XCO). We found that the systematic difference between the S5P CO column and NDACC CO column (excluding two outlier stations) is on average 6.5 +/- 3.54 %. We found a correlation of above 0.9 for most TCCON and NDACC stations. The study shows the high quality of S5P CH4 and CO data by validating the products against reference global TCCON and NDACC stations covering a wide range of latitudinal bands, atmospheric conditions and surface conditions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy