SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Di Martino Maria Letizia) "

Sökning: WFRF:(Di Martino Maria Letizia)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • von Beek, Christopher, et al. (författare)
  • A two-step activation mechanism enables mast cells to differentiate their response between extracellular and invasive enterobacterial infection
  • 2024
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Mast cells localize to mucosal tissues and contribute to innate immune defense against infection. How mast cells sense, differentiate between, and respond to bacterial pathogens remains a topic of ongoing debate. Using the prototype enteropathogen Salmonella Typhimurium (S.Tm) and other related enterobacteria, here we show that mast cells can regulate their cytokine secretion response to distinguish between extracellular and invasive bacterial infection. Tissue-invasive S.Tm and mast cells colocalize in the mouse gut during acute Salmonella infection. Toll-like Receptor 4 (TLR4) sensing of extracellular S.Tm, or pure lipopolysaccharide, causes a modest induction of cytokine transcripts and proteins, including IL-6, IL-13, and TNF. By contrast, type-III-secretion-system-1 (TTSS-1)-dependent S.Tm invasion of both mouse and human mast cells triggers rapid and potent inflammatory gene expression and >100-fold elevated cytokine secretion. The S.Tm TTSS-1 effectors SopB, SopE, and SopE2 here elicit a second activation signal, including Akt phosphorylation downstream of effector translocation, which combines with TLR activation to drive the full-blown mast cell response. Supernatants from S.Tm-infected mast cells boost macrophage survival and maturation from bone-marrow progenitors. Taken together, this study shows that mast cells can differentiate between extracellular and host-cell invasive enterobacteria via a two-step activation mechanism and tune their inflammatory output accordingly.
  •  
2.
  • von Beek, Christopher, et al. (författare)
  • A two-step activation mechanism enables mast cells to differentiate their response between extracellular and invasive enterobacterial infection
  • 2024
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Mast cells localize to mucosal tissues and contribute to innate immune defense against infection. How mast cells sense, differentiate between, and respond to bacterial pathogens remains a topic of ongoing debate. Using the prototype enteropathogen Salmonella Typhimurium (S.Tm) and other related enterobacteria, here we show that mast cells can regulate their cytokine secretion response to distinguish between extracellular and invasive bacterial infection. Tissue-invasive S.Tm and mast cells colocalize in the mouse gut during acute Salmonella infection. Toll-like Receptor 4 (TLR4) sensing of extracellular S.Tm, or pure lipopolysaccharide, causes a modest induction of cytokine transcripts and proteins, including IL-6, IL-13, and TNF. By contrast, type-III-secretion-system-1 (TTSS-1)-dependent S.Tm invasion of both mouse and human mast cells triggers rapid and potent inflammatory gene expression and >100-fold elevated cytokine secretion. The S.Tm TTSS-1 effectors SopB, SopE, and SopE2 here elicit a second activation signal, including Akt phosphorylation downstream of effector translocation, which combines with TLR activation to drive the full-blown mast cell response. Supernatants from S.Tm-infected mast cells boost macrophage survival and maturation from bone-marrow progenitors. Taken together, this study shows that mast cells can differentiate between extracellular and host-cell invasive enterobacteria via a two-step activation mechanism and tune their inflammatory output accordingly.
  •  
3.
  • Di Martino, Maria Letizia, et al. (författare)
  • Barcoded Consortium Infections Resolve Cell Type-Dependent Salmonella enterica Serovar Typhimurium Entry Mechanisms
  • 2019
  • Ingår i: mBio. - : AMER SOC MICROBIOLOGY. - 2161-2129 .- 2150-7511. ; 10:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Bacterial host cell invasion mechanisms depend on the bacterium's virulence factors and the properties of the target cell. The enteropathogen Salmonella enterica serovar Typhimurium (S. Tm) invades epithelial cell types in the gut mucosa and a variety of immune cell types at later infection stages. The molecular mechanism(s) of host cell entry has, however, been studied predominantly in epithelial cell lines. S. Tm uses a type three secretion system (TTSS-1) to translocate effectors into the host cell cytosol, thereby sparking actin ruffle-dependent entry. The ruffles also fuel cooperative invasion by bystander bacteria. In addition, several TTSS-1-independent entry mechanisms exist, involving alternative S. Tm virulence factors, or the passive uptake of bacteria by phagocytosis. However, it remains ill-defined how S. Tm invasion mechanisms vary between host cells. Here, we developed an internally controlled and scalable method to map S. Tm invasion mechanisms across host cell types and conditions. The method relies on host cell infections with consortia of chromosomally tagged wild-type and mutant S. Tm strains, where the abundance of each strain can be quantified by qPCR or amplicon sequencing. Using this methodology, we quantified cooccurring TTSS-1-dependent, cooperative, and TTSS-1-independent invasion events in epithelial, monocyte, and macrophage cells. We found S. Tm invasion of epithelial cells and monocytes to proceed by a similar MOI-dependent mix of TTSS-1-dependent and cooperative mechanisms. TTSS-1-independent entry was more frequent in macrophages. Still, TTSS-1-dependent invasion dominated during the first minutes of interaction also with this cell type. Finally, the combined action of the SopB/SopE/SopE2 effectors was sufficient to explain TTSS-1-dependent invasion across both epithelial and phagocytic cells. IMPORTANCE Salmonella enterica serovar Typhimurium (S. Tm) is a widespread and broad-host-spectrum enteropathogen with the capacity to invade diverse cell types. Still, the molecular basis for the host cell invasion process has largely been inferred from studies of a few selected cell lines. Our work resolves the mechanisms that Salmonellae employ to invade prototypical host cell types, i.e., human epithelial, monocyte, and macrophage cells, at a previously unattainable level of temporal and quantitative precision. This highlights efficient bacterium-driven entry into innate immune cells and uncovers a type III secretion system effector module that dominates active bacterial invasion of not only epithelial cells but also monocytes and macrophages. The results are derived from a generalizable method, where we combine barcoding of the bacterial chromosome with mixed consortium infections of cultured host cells. The application of this methodology across bacterial species and infection models will provide a scalable means to address host-pathogen interactions in diverse contexts.
  •  
4.
  • Di Martino, Maria Letizia, et al. (författare)
  • One Gene and Two Proteins : a Leaderless mRNA Supports the Translation of a Shorter Form of the Shigella VirF Regulator
  • 2016
  • Ingår i: mBio. - 2161-2129 .- 2150-7511. ; 7:6
  • Tidskriftsartikel (refereegranskat)abstract
    • VirF, an AraC-like activator, is required to trigger a regulatory cascade that initiates the invasive program of Shigella spp., the etiological agents of bacillary dysentery in humans. VirF expression is activated upon entry into the host and depends on many environmental signals. Here, we show that the virF mRNA is translated into two proteins, the major form, VirF(30) (30 kDa), and the shorter VirF(21) (21 kDa), lacking the N-terminal segment. By site-specific mutagenesis and toeprint analysis, we identified the translation start sites of VirF(30) and VirF(21) and showed that the two different forms of VirF arise from differential translation. Interestingly, in vitro and in vivo translation experiments showed that VirF(21) is also translated from a leaderless mRNA (llmRNA) whose 5' end is at position +309/+310, only 1 or 2 nucleotides upstream of the ATG84 start codon of VirF(21). The llmRNA is transcribed from a gene-internal promoter, which we identified here. Functional analysis revealed that while VirF(30) is responsible for activation of the virulence system, VirF(21) negatively autoregulates virF expression itself. Since VirF(21) modulates the intracellular VirF levels, this suggests that transcription of the llmRNA might occur when the onset of the virulence program is not required. We speculate that environmental cues, like stress conditions, may promote changes in virF mRNA transcription and preferential translation of llmRNA. IMPORTANCE Shigella spp. are a major cause of dysentery in humans. In bacteria of this genus, the activation of the invasive program involves a multitude of signals that act on all layers of the gene regulatory hierarchy. By controlling the essential genes for host cell invasion, VirF is the key regulator of the switch from the noninvasive to the invasive phenotype. Here, we show that the Shigella virF gene encodes two proteins of different sizes, VirF(30) and VirF(21), that are functionally distinct. The major form, VirF(30), activates the genes necessary for virulence, whereas the minor VirF(21), which shares the C-terminal two-thirds of VirF(30), negatively autoregulates virF expression itself. VirF(21) is transcribed from a newly identified gene-internal promoter and, moreover, is translated from an unusual leaderless mRNA. The identification of a new player in regulation adds complexity to the regulation of the Shigella invasive process and may help development of new therapies for shigellosis.
  •  
5.
  • Ek, Viktor, et al. (författare)
  • A motile doublet form of Salmonella Typhimurium diversifies target search behavior at the epithelial surface
  • 2022
  • Ingår i: Molecular Microbiology. - : John Wiley & Sons. - 0950-382X .- 1365-2958. ; 117:5, s. 1156-1172
  • Tidskriftsartikel (refereegranskat)abstract
    • The behaviors of infectious bacteria are commonly studied in bulk. This is effective to define the general properties of a given isolate, but insufficient to resolve subpopulations and unique single-microbe behaviors within the bacterial pool. We here employ microscopy to study single-bacterium characteristics among Salmonella enterica serovar Typhimurium (S.Tm), as they prepare for and launch invasion of epithelial host cells. We find that during the bacterial growth cycle, S.Tm populations switch gradually from fast planktonic growth to a host cell-invasive phenotype, characterized by flagellar motility and expression of the Type-three-secretion-system-1. The indistinct nature of this shift leads to the establishment of a transient subpopulation of S.Tm "doublets"-waist-bearing bacteria anticipating cell division-which simultaneously express host cell invasion machinery. In epithelial cell culture infections, these S.Tm doublets outperform their "singlet" brethren and represent a hyperinvasive subpopulation. Atop both glass and enteroid-derived monolayers, doublets swim along markedly straighter trajectories than singlets, thereby diversifying search patterns and improving the surface exploration capacity of the total bacterial population. The straighter swimming, combined with an enhanced cell-adhesion propensity, suffices to account for the hyperinvasive doublet phenotype. This work highlights bacterial cell length heterogeneity as a key determinant of target search patterns atop epithelia.
  •  
6.
  • Fattinger, Stefan A., et al. (författare)
  • Epithelium-autonomous NAIP/NLRC4 prevents TNF-driven inflammatory destruction of the gut epithelial barrier in Salmonella-infected mice
  • 2021
  • Ingår i: Mucosal Immunology. - : Springer Nature. - 1933-0219 .- 1935-3456. ; 14:3, s. 615-629
  • Tidskriftsartikel (refereegranskat)abstract
    • The gut epithelium is a critical protective barrier. Its NAIP/NLRC4 inflammasome senses infection by Gram-negative bacteria, including Salmonella Typhimurium (S.Tm) and promotes expulsion of infected enterocytes. During the first ~12–24 h, this reduces mucosal S.Tm loads at the price of moderate enteropathy. It remained unknown how this NAIP/NLRC4-dependent tradeoff would develop during subsequent infection stages. In NAIP/NLRC4-deficient mice, S.Tm elicited severe enteropathy within 72 h, characterized by elevated mucosal TNF (>20 pg/mg) production from bone marrow-derived cells, reduced regeneration, excessive enterocyte loss, and a collapse of the epithelial barrier. TNF-depleting antibodies prevented this destructive pathology. In hosts proficient for epithelial NAIP/NLRC4, a heterogeneous enterocyte death response with both apoptotic and pyroptotic features kept S.Tm loads persistently in check, thereby preventing this dire outcome altogether. Our results demonstrate that immediate and selective removal of infected enterocytes, by locally acting epithelium-autonomous NAIP/NLRC4, is required to avoid a TNF-driven inflammatory hyper-reaction that otherwise destroys the epithelial barrier.
  •  
7.
  • Fattinger, Stefan A., et al. (författare)
  • Salmonella Typhimurium discreet-invasion of the murine gut absorptive epithelium
  • 2020
  • Ingår i: PLoS Pathogens. - : Public Library of Science (PLoS). - 1553-7366 .- 1553-7374. ; 16:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Bacterial pathogens can use secreted effector molecules to drive entry into host cells. Studies of the intestinal pathogen S.Tm have been central to uncover the mechanistic basis for the entry process. More than two decades of research have resulted in a detailed model for how S.Tm invades gut epithelial cells through effector triggering of large Rho-GTPase-dependent actin ruffles. However, the evidence for this model comes predominantly from studies in cultured cell lines. These experimental systems lack many of the architectural and signaling features of the intact gut epithelium. Our study surprisingly reveals that in the intact mouse gut, S.Tm invades absorptive epithelial cells through a process that does not require the Rho-GTPase-activating effectors and can proceed in the absence of the prototypical ruffling response. Instead, S.Tm exploits another effector, SipA, to sneak in through discreet entry structures close to cell-cell junctions. Our results challenge the current model for S.Tm epithelial cell entry and emphasizes the need of taking a physiological host cell context into account when studying bacterium-host cell interactions. Salmonella enterica serovar Typhimurium (S.Tm) infections of cultured cell lines have given rise to the ruffle model for epithelial cell invasion. According to this model, the Type-Three-Secretion-System-1 (TTSS-1) effectors SopB, SopE and SopE2 drive an explosive actin nucleation cascade, resulting in large lamellipodia- and filopodia-containing ruffles and cooperative S.Tm uptake. However, cell line experiments poorly recapitulate many of the cell and tissue features encountered in the host's gut mucosa. Here, we employed bacterial genetics and multiple imaging modalities to compare S.Tm invasion of cultured epithelial cell lines and the gut absorptive epithelium in vivo in mice. In contrast to the prevailing ruffle-model, we find that absorptive epithelial cell entry in the mouse gut occurs through "discreet-invasion". This distinct entry mode requires the conserved TTSS-1 effector SipA, involves modest elongation of local microvilli in the absence of expansive ruffles, and does not favor cooperative invasion. Discreet-invasion preferentially targets apicolateral hot spots at cell-cell junctions and shows strong dependence on local cell neighborhood. This proof-of-principle evidence challenges the current model for how S.Tm can enter gut absorptive epithelial cells in their intact in vivo context.
  •  
8.
  • Geiser, Petra, et al. (författare)
  • Salmonella enterica Serovar Typhimurium Exploits Cycling through Epithelial Cells To Colonize Human and Murine Enteroids
  • 2021
  • Ingår i: mBio. - : American Society for Microbiology. - 2161-2129 .- 2150-7511. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Enterobacterial pathogens infect the gut by a multistep process, resulting in colonization of both the lumen and the mucosal epithelium. Due to experimental constraints, it remains challenging to address how luminal and epithelium-lodged pathogen populations cross-feed each other in vivo. Enteroids are cultured three-dimensional miniature intestinal organs with a single layer of primary intestinal epithelial cells (IECs) surrounding a central lumen. They offer new opportunities to study enterobacterial infection under near-physiological conditions, at a temporal and spatial resolution not attainable in animal models, but remain poorly explored in this context. We employed microinjection, time-lapse microscopy, bacterial genetics, and barcoded consortium infections to describe the complete infection cycle of Salmonella enterica serovar Typhimurium in both human and murine enteroids. Flagellar motility and type III secretion system 1 (TTSS-1) promoted Salmonella Typhimurium targeting of the intraepithelial compartment and breaching of the epithelial barrier. Strikingly, however, TTSS-1 also potently boosted colonization of the enteroid lumen. By tracing the infection over time, we identified a cycle(s) of TTSS-1-driven IEC invasion, intraepithelial replication, and reemergence through infected IEC expulsion as a key mechanism for Salmonella Typhimurium luminal colonization. These findings suggest a positive feed-forward loop, through which IEC invasion by planktonic bacteria fuels further luminal population expansion, thereby ensuring efficient colonization of both the intraepithelial and luminal niches.IMPORTANCE Pathogenic gut bacteria are common causes of intestinal disease. Enteroids—cultured three-dimensional replicas of the mammalian gut—offer an emerging model system to study disease mechanisms under conditions that recapitulate key features of the intestinal tract. In this study, we describe the full life cycle of the prototype gut pathogen Salmonella enterica serovar Typhimurium within human and mouse enteroids. We map the consecutive steps and define the bacterial virulence factors that drive colonization of luminal and epithelial compartments, as well as breaching of the epithelial barrier. Strikingly, our work reveals how bacterial colonization of the epithelium potently fuels expansion also in the luminal compartment, through a mechanism involving the death and expulsion of bacterium-infected epithelial cells. These findings have repercussions for our understanding of the Salmonella infection cycle. Moreover, our work provides a comprehensive foundation for the use of microinjected enteroids to model gut bacterial diseases.
  •  
9.
  • Kaur, Amanpreet, et al. (författare)
  • Chemoselective bicyclobutane-based mass spectrometric detection of biological thiols uncovers human and bacterial metabolites
  • 2023
  • Ingår i: Chemical Science. - : Royal Society of Chemistry. - 2041-6520 .- 2041-6539. ; 14:20, s. 5291-5301
  • Tidskriftsartikel (refereegranskat)abstract
    • Sulfur is an essential element of life. Thiol-containing metabolites in all organisms are involved in the regulation of diverse biological processes. Especially, the microbiome produces bioactive metabolites or biological intermediates of this compound class. The analysis of thiol-containing metabolites is challenging due to the lack of specific tools, making these compounds difficult to investigate selectively. We have now developed a new methodology comprising bicyclobutane for chemoselective and irreversible capturing of this metabolite class. We utilized this new chemical biology tool immobilized onto magnetic beads for the investigation of human plasma, fecal samples, and bacterial cultures. Our mass spectrometric investigation detected a broad range of human, dietary and bacterial thiol-containing metabolites and we even captured the reactive sulfur species cysteine persulfide in both fecal and bacterial samples. The described comprehensive methodology represents a new mass spectrometric strategy for the discovery of bioactive thiol-containing metabolites in humans and the microbiome.
  •  
10.
  • Pasqua, Martina, et al. (författare)
  • The Intriguing Evolutionary Journey of Enteroinvasive E-coli (EIEC) toward Pathogenicity
  • 2017
  • Ingår i: Frontiers in Microbiology. - : FRONTIERS MEDIA SA. - 1664-302X. ; 8
  • Forskningsöversikt (refereegranskat)abstract
    • Among the intestinal pathogenic Escherichia coli, enteroinvasive E. coli (EIEC) are a group of intracellular pathogens able to enter epithelial cells of colon, multiplicate within them, and move between adjacent cells with a mechanism similar to Shigella, the ethiological agent of bacillary dysentery. Despite EIEC belong to the same pathotype of Shigella, they neither have the full set of traits that define Shigella nor have undergone the extensive gene decay observed in Shigella. Molecular analysis confirms that EIEC are widely distributed among E. coli phylogenetic groups and correspond to bioserotypes found in many E. coli serogroups. Like Shigella, also in EIEC the critical event toward a pathogenic life-style consisted in the acquisition by horizontal gene transfer of a large F-type plasmid (pINV) containing the genes required for invasion, intracellular survival, and spreading through the intestinal mucosa. In Shigella, the ample gain in virulence determinants has been counteracted by a substantial loss of functions that, although important for the survival in the environment, are redundant or deleterious for the life inside the host. The pathoadaptation process that has led Shigella to modify its metabolic profile and increase its pathogenic potential is still in infancy in EIEC, although maintenance of some features typical of E. coli might favor their emerging relevance as intestinal pathogens worldwide, as documented by recent outbreaks in industrialized countries. In this review, we will discuss the evolution of EIEC toward Shigella-like invasive forms going through the epidemiology, including the emergence of new virulent strains, their genome organization, and the complex interactions they establish with the host.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12
Typ av publikation
tidskriftsartikel (11)
konstnärligt arbete (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (12)
Författare/redaktör
Di Martino, Maria Le ... (12)
Sellin, Mikael E. (10)
Hardt, Wolf-Dietrich (5)
Geiser, Petra (5)
Eriksson, Jens, 1982 ... (5)
Fattinger, Stefan A. (4)
visa fler...
Samperio Ventayol, P ... (4)
Ek, Viktor (3)
Colonna, Bianca (3)
Prosseda, Gianni (3)
Hallgren, Jenny (2)
Sundbom, Magnus (2)
Pejler, Gunnar (2)
Webb, Dominic-Luc (2)
Hellström, Per M., 1 ... (2)
Mendez-Enriquez, Eri ... (2)
Fahlgren, Anna, 1972 ... (2)
Fällman, Maria, 1960 ... (2)
Furter, Markus (2)
Florbrant, Alexandra (2)
Sima, Eduardo, Ph.D. ... (2)
Ahl, David (1)
Phillipson, Mia, 197 ... (1)
Al-Saffar, Anas Kh. ... (1)
Wagner, Gerhart E. H ... (1)
Eriksson, Jens (1)
Vujasinovic, Mirosla ... (1)
Löhr, J-Matthias (1)
Bakkeren, Erik (1)
Hausmann, Annika (1)
Globisch, Daniel (1)
Gekara, Nelson O (1)
Lin, Weifeng (1)
Pilhofer, Martin (1)
Kaur, Amanpreet (1)
Romilly, Cedric (1)
Rohde, Manfred (1)
Felmy, Boas (1)
Nguyen, Bidong D. (1)
Barthel-Scherrer, Ma ... (1)
Gül, Ersin (1)
Shao, Feng (1)
Bock, Desiree (1)
Deuring, Sabrina (1)
Kreibich, Saskia (1)
Bosia, Francesco (1)
Muller-Hauser, Anna ... (1)
Dovhalyuk, Vladyslav (1)
Driutti, Léna (1)
Pasqua, Martina (1)
visa färre...
Lärosäte
Uppsala universitet (11)
Umeå universitet (2)
Stockholms universitet (1)
Karolinska Institutet (1)
Språk
Engelska (12)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (8)
Naturvetenskap (7)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy