SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Di Molfetta Guglielmo 1995) "

Sökning: WFRF:(Di Molfetta Guglielmo 1995)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ashton, Nicholas J., et al. (författare)
  • Diagnostic Accuracy of a Plasma Phosphorylated Tau 217 Immunoassay for Alzheimer Disease Pathology
  • 2024
  • Ingår i: JAMA NEUROLOGY. - 2168-6149 .- 2168-6157.
  • Tidskriftsartikel (refereegranskat)abstract
    • ImportancePhosphorylated tau (p-tau) is a specific blood biomarker for Alzheimer disease (AD) pathology, with p-tau217 considered to have the most utility. However, availability of p-tau217 tests for research and clinical use has been limited. Expanding access to this highly accurate AD biomarker is crucial for wider evaluation and implementation of AD blood tests. ObjectiveTo determine the utility of a novel and commercially available immunoassay for plasma p-tau217 to detect AD pathology and evaluate reference ranges for abnormal amyloid beta (A beta) and longitudinal change across 3 selected cohorts. Design, Setting, and ParticipantsThis cohort study examined data from 3 single-center observational cohorts: cross-sectional and longitudinal data from the Translational Biomarkers in Aging and Dementia (TRIAD) cohort (visits October 2017-August 2021) and Wisconsin Registry for Alzheimer's Prevention (WRAP) cohort (visits February 2007-November 2020) and cross-sectional data from the Sant Pau Initiative on Neurodegeneration (SPIN) cohort (baseline visits March 2009-November 2021). Participants included individuals with and without cognitive impairment grouped by amyloid and tau (AT) status using PET or CSF biomarkers. Data were analyzed from February to June 2023. ExposuresMagnetic resonance imaging, A beta positron emission tomography (PET), tau PET, cerebrospinal fluid (CSF) biomarkers (A beta 42/40 and p-tau immunoassays), and plasma p-tau217 (ALZpath pTau217 assay). Main Outcomes and MeasuresAccuracy of plasma p-tau217 in detecting abnormal amyloid and tau pathology, longitudinal p-tau217 change according to baseline pathology status. ResultsThe study included 786 participants (mean [SD] age, 66.3 [9.7] years; 504 females [64.1%] and 282 males [35.9%]). High accuracy was observed in identifying elevated A beta (area under the curve [AUC], 0.92-0.96; 95% CI, 0.89-0.99) and tau pathology (AUC, 0.93-0.97; 95% CI, 0.84-0.99) across all cohorts. These accuracies were comparable with CSF biomarkers in determining abnormal PET signal. The detection of abnormal A beta pathology using a 3-range reference yielded reproducible results and reduced confirmatory testing by approximately 80%. Longitudinally, plasma p-tau217 values showed an annual increase only in A beta-positive individuals, with the highest increase observed in those with tau positivity. Conclusions and RelevanceThis study found that a commercially available plasma p-tau217 immunoassay accurately identified biological AD, comparable with results using CSF biomarkers, with reproducible cut-offs across cohorts. It detected longitudinal changes, including at the preclinical stage.
  •  
2.
  • Ashton, Nicholas J., et al. (författare)
  • Diagnostic accuracy of the plasma ALZpath pTau217 immunoassay to identify Alzheimer's disease pathology.
  • 2023
  • Ingår i: medRxiv : the preprint server for health sciences.
  • Tidskriftsartikel (refereegranskat)abstract
    • Phosphorylated tau (pTau) is a specific blood biomarker for Alzheimer's disease (AD) pathology, with pTau217 considered to have the most utility. However, availability of pTau217 tests for research and clinical use has been limited. Expanding access to this highly accurate AD biomarker is crucial for wider evaluation and implementation of AD blood tests.To determine the utility of a novel and commercially available Single molecule array (Simoa) for plasma pTau217 (ALZpath) to detect AD pathology. To evaluate references ranges for abnormal Aβ across three selected cohorts.Three single-centre observational cohorts were involved in the study: Translational Biomarkers in Aging and Dementia (TRIAD), Wisconsin Registry for Alzheimer's Prevention (WRAP), and Sant Pau Initiative on Neurodegeneration (SPIN). MRI, Aβ-PET, and tau-PET data were available for TRIAD and WRAP, while CSF biomarkers were additionally measured in a subset of TRIAD and SPIN. Plasma measurements of pTau181, pTau217 (ALZpath), pTau231, Aβ42/40, GFAP, and NfL, were available for all cohorts. Longitudinal blood biomarker data spanning 3 years for TRIAD and 8 years for WRAP were included.MRI, Aβ-PET, tau-PET, CSF biomarkers (Aβ42/40 and pTau immunoassays) and plasma pTau217 (ALZpath Simoa).The accuracy of plasma pTau217 for detecting abnormal amyloid and tau pathology. Longitudinal pTau217 change according to baseline pathology status.The study included 786 participants (mean [SD] age, 66.3 [9.7] years; 504 females [64.1%]) were included in the study. High accuracy was observed in identifying elevated Aβ (AUC, 0.92-0.96; 95%CI 0.89-0.99) and tau pathology (AUC, 0.93-0.97; 95%CI 0.84-0.99) across all cohorts. These accuracies were significantly higher than other plasma biomarker combinations and comparable to CSF biomarkers. The detection of abnormal Aβ pathology using binary or three-range references yielded reproducible results. Longitudinally, plasma pTau217 showed an annual increase only in Aβ-positive individuals, with the highest increase observed in those with tau-positivity.The ALZpath plasma pTau217 Simoa assay accurately identifies biological AD, comparable to CSF biomarkers, with reproducible cut-offs across cohorts. It detects longitudinal changes, including at the preclinical stage, and is the first widely available, accessible, and scalable blood test for pTau217 detection.
  •  
3.
  • Ashton, Nicholas J., et al. (författare)
  • Differential roles of Aβ42/40, p-tau231 and p-tau217 for Alzheimer's trial selection and disease monitoring.
  • 2022
  • Ingår i: Nature medicine. - : Springer Science and Business Media LLC. - 1546-170X .- 1078-8956. ; 28:12, s. 2555-2562
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood biomarkers indicative of Alzheimer's disease (AD) pathology are altered in both preclinical and symptomatic stages of the disease. Distinctive biomarkers may be optimal for the identification of AD pathology or monitoring of disease progression. Blood biomarkers that correlate with changes in cognition and atrophy during the course of the disease could be used in clinical trials to identify successful interventions and thereby accelerate the development of efficient therapies. When disease-modifying treatments become approved for use, efficient blood-based biomarkers might also inform on treatment implementation and management in clinical practice. In the BioFINDER-1 cohort, plasma phosphorylated (p)-tau231 and amyloid-β42/40 ratio were more changed at lower thresholds of amyloid pathology. Longitudinally, however, only p-tau217 demonstrated marked amyloid-dependent changes over 4-6years in both preclinical and symptomatic stages of the disease, with no such changes observed in p-tau231, p-tau181, amyloid-β42/40, glial acidic fibrillary protein or neurofilament light. Only longitudinal increases of p-tau217 were also associated with clinical deterioration and brain atrophy in preclinical AD. The selective longitudinal increase of p-tau217 and its associations with cognitive decline and atrophy was confirmed in an independent cohort (Wisconsin Registry for Alzheimer's Prevention). These findings support the differential association of plasma biomarkers with disease development and strongly highlight p-tau217 as a surrogate marker of disease progression in preclinical and prodromal AD, with impact for the development of new disease-modifying treatments.
  •  
4.
  • Ashton, Nicholas J., et al. (författare)
  • Plasma concentrations of glial fibrillary acidic protein, neurofilament light, and tau in Alexander disease
  • 2024
  • Ingår i: Neurological Sciences. - 1590-1874 .- 1590-3478.
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Alexander disease (AxD) is a rare leukodystrophy caused by dominant gain-of-function mutations in the gene encoding the astrocyte intermediate filament, glial fibrillary acidic protein (GFAP). However, there is an urgent need for biomarkers to assist in monitoring not only the progression of disease but also the response to treatment. GFAP is the obvious candidate for such a biomarker, as it is measurable in body fluids that are readily accessible for biopsy, namely cerebrospinal fluid and blood. However, in the case of ASOs, the treatment that is furthest in development, GFAP is the target of therapy and presumably would go down independent of disease status. Hence, there is a critical need for biomarkers that are not directly affected by the treatment strategy. Methods: We explored the potential utility of biomarkers currently being studied in other neurodegenerative diseases and injuries, specifically neurofilament light protein (NfL), phosphorylated forms of tau, and amyloid-β peptides (Aβ42/40). Results and Conclusions: Here, we report that GFAP is elevated in plasma of all age groups afflicted by AxD, including those with adult onset. NfL and p-tau are also elevated, but to a much lesser extent than GFAP. In contrast, the levels of Aß40 and Aß42are not altered in AxD.
  •  
5.
  • Bucci, M., et al. (författare)
  • Profiling of plasma biomarkers in the context of memory assessment in a tertiary memory clinic
  • 2023
  • Ingår i: Translational Psychiatry. - 2158-3188. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma biomarkers have shown promising performance in research cohorts in discriminating between different stages of Alzheimer's disease (AD). Studies in clinical populations are necessary to provide insights on the clinical utility of plasma biomarkers before their implementation in real-world settings. Here we investigated plasma biomarkers (glial fibrillary acidic protein (GFAP), tau phosphorylated at 181 and 231 (pTau181, pTau231), amyloid & beta; (A & beta;) 42/40 ratio, neurofilament light) in 126 patients (age = 65 & PLUSMN; 8) who were admitted to the Clinic for Cognitive Disorders, at Karolinska University Hospital. After extensive clinical assessment (including CSF analysis), patients were classified as: mild cognitive impairment (MCI) (n = 75), AD (n = 25), non-AD dementia (n = 16), no dementia (n = 9). To refine the diagnosis, patients were examined with [F-18]flutemetamol PET (A & beta;-PET). A & beta;-PET images were visually rated for positivity/negativity and quantified in Centiloid. Accordingly, 68 A & beta;+ and 54 A & beta;- patients were identified. Plasma biomarkers were measured using single molecule arrays (SIMOA). Receiver-operated curve (ROC) analyses were performed to detect A & beta;-PET+ using the different biomarkers. In the whole cohort, the A & beta;-PET centiloid values correlated positively with plasma GFAP, pTau231, pTau181, and negatively with A & beta;42/40 ratio. While in the whole MCI group, only GFAP was associated with A & beta; PET centiloid. In ROC analyses, among the standalone biomarkers, GFAP showed the highest area under the curve discriminating A & beta;+ and A & beta;- compared to other plasma biomarkers. The combination of plasma biomarkers via regression was the most predictive of A & beta;-PET, especially in the MCI group (prior to PET, n = 75) (sensitivity = 100%, specificity = 82%, negative predictive value = 100%). In our cohort of memory clinic patients (mainly MCI), the combination of plasma biomarkers was sensitive in ruling out A & beta;-PET negative individuals, thus suggesting a potential role as rule-out tool in clinical practice.
  •  
6.
  • Huber, Hanna, 1989, et al. (författare)
  • Levels of Alzheimer's disease blood biomarkers are altered after food intake-A pilot intervention study in healthy adults
  • 2023
  • Ingår i: Alzheimers & Dementia. - 1552-5260. ; 19:12, s. 5531-5540
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTIONBlood biomarkers accurately identify Alzheimer's disease (AD) pathophysiology and axonal injury. We investigated the influence of food intake on AD-related biomarkers in cognitively healthy, obese adults at high metabolic risk. METHODSOne-hundred eleven participants underwent repeated blood sampling during 3 h after a standardized meal (postprandial group, PG). For comparison, blood was sampled from a fasting subgroup over 3 h (fasting group, FG). Plasma neurofilament light (NfL), glial fibrillary acidic protein (GFAP), amyloid-beta (A beta) 42/40, phosphorylated tau (p-tau) 181 and 231, and total-tau were measured via single molecule array assays. RESULTSSignificant differences were found for NfL, GFAP, A beta 42/40, p-tau181, and p-tau231 between FG and PG. The greatest change to baseline occurred for GFAP and p-tau181 (120 min postprandially, p < 0.0001). CONCLUSIONOur data suggest that AD-related biomarkers are altered by food intake. Further studies are needed to verify whether blood biomarker sampling should be performed in the fasting state. HighlightsAcute food intake alters plasma biomarkers of Alzheimer's disease in obese, otherwise healthy adults.We also found dynamic fluctuations in plasma biomarkers concentration in the fasting state suggesting physiological diurnal variations.Further investigations are highly needed to verify if biomarker measurements should be performed in the fasting state and at a standardized time of day to improve the diagnostic accuracy.
  •  
7.
  • Martinez-Dubarbie, Francisco, et al. (författare)
  • Plasma Phosphorylated Tau 231 Increases at One-Year Intervals in Cognitively Unimpaired Subjects
  • 2024
  • Ingår i: JOURNAL OF ALZHEIMERS DISEASE. - 1387-2877 .- 1875-8908. ; 98:3, s. 1029-1042
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Plasma biomarkers of Alzheimer's disease (AD) constitute a non-invasive tool for diagnosing and classifying subjects. They change even in preclinical stages, but it is necessary to understand their properties so they can be helpful in a clinical context. Objective: With this work we want to study the evolution of p-tau231 plasma levels in the preclinical stages of AD and its relationship with both cognitive and imaging parameters. Methods: We evaluated plasma phosphorylated (p)-tau231 levels in 146 cognitively unimpaired subjects in sequential visits. We performed a Linear Mixed-effects Model to analyze their rate of change. We also correlated their baseline levels with cognitive tests and structural and functional image values. ATN status was defined based on cerebrospinal fluid biomarkers. Results: Plasma p-tau231 showed a significant rate of change over time. It correlated negatively with memory tests only in amyloid-positive subjects. No significant correlations were found with any imaging measures. Conclusions: Increases in plasma p-tau231 can be detected at one-year intervals in cognitively healthy subjects. It could constitute a sensitive marker for detecting early signs of neuronal network impairment by amyloid.
  •  
8.
  • Oeckl, P., et al. (författare)
  • Blood beta-synuclein is related to amyloid PET positivity in memory clinic patients
  • 2023
  • Ingår i: Alzheimers & Dementia. - 1552-5260. ; 19:11, s. 4896-4907
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: beta-synuclein is an emerging blood biomarker to study synaptic degeneration in Alzheimert's disease (AD), but its relation to amyloid-beta (A beta) pathology is unclear. Methods: We investigated the association of plasma beta-synuclein levels with ([18F])flutemetamol positron emission tomography (PET) in patients with AD dementia (n = 51), mild cognitive impairment (MCI-A beta+ n = 18, MCI-A beta-n = 30), non-AD dementias (n = 22), and non-demented controls (n = 5). Results: Plasma beta-synuclein levels were higher in A beta+(AD dementia, MCI-A beta+) than in A beta-subjects (non-AD dementias, MCI-A beta-) with good discrimination of A beta+ from A beta-subjects and prediction of A beta status in MCI individuals. A positive correlation between plasma beta-synuclein and A beta PET was observed in multiple cortical regions across all lobes. Discussion: Plasma beta-synuclein demonstrated discriminative properties for A beta PET positive and negative subjects. Our data underline that beta-synuclein is not a direct marker of A beta pathology and suggest different longitudinal dynamics of synaptic degeneration versus amyloid deposition across the AD continuum.
  •  
9.
  • Therriault, Joseph, et al. (författare)
  • Comparison of two plasma p-tau217 assays to detect and monitor Alzheimer's pathology.
  • 2024
  • Ingår i: EBioMedicine. - 2352-3964. ; 102
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood-based biomarkers of Alzheimer's disease (AD) have become increasingly important as scalable tools for diagnosis and determining clinical trial eligibility. P-tau217 is the most promising due to its excellent sensitivity and specificity for AD-related pathological changes.We compared the performance of two commercially available plasma p-tau217 assays (ALZpath p-tau217 and Janssen p-tau217+) in 294 individuals cross-sectionally. Correlations with amyloid PET and tau PET were assessed, and Receiver Operating Characteristic (ROC) analyses evaluated both p-tau217 assays for identifying AD pathology.Both plasma p-tau217 assays were strongly associated with amyloid and tau PET. Furthermore, both plasma p-tau217 assays identified individuals with AD vs other neurodegenerative diseases (ALZpath AUC=0.95; Janssen AUC=0.96). Additionally, plasma p-tau217 concentrations rose with AD severity and their annual changes correlated with tau PET annual change.Both p-tau217 assays had excellent diagnostic performance for AD. Our study supports the future clinical use of commercially-available assays for p-tau217.This research is supported by the Weston Brain Institute, Canadian Institutes of Health Research (CIHR), Canadian Consortium on Neurodegeneration in Aging, the Alzheimer's Association, Brain Canada Foundation, the Fonds de Recherche du Québec - Santé and the Colin J. Adair Charitable Foundation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy