SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Di Muro M) "

Sökning: WFRF:(Di Muro M)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tabiri, S, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
2.
  • Bravo, L, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
3.
  • Arellano, Santiago, 1981, et al. (författare)
  • Synoptic analysis of a decade of daily measurements of SO2 emission in the troposphere from volcanoes of the global ground-based Network for Observation of Volcanic and Atmospheric Change
  • 2021
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3516 .- 1866-3508. ; 13:3, s. 1167-1188
  • Tidskriftsartikel (refereegranskat)abstract
    • Volcanic plumes are common and far-reaching manifestations of volcanic activity during and between eruptions. Observations of the rate of emission and composition of volcanic plumes are essential to recognize and, in some cases, predict the state of volcanic activity. Measurements of the size and location of the plumes are important to assess the impact of the emission from sporadic or localized events to persistent or widespread processes of climatic and environmental importance. These observations provide information on volatile budgets on Earth, chemical evolution of magmas, and atmospheric circulation and dynamics. Space-based observations during the last decades have given us a global view of Earth's volcanic emission, particularly of sulfur dioxide (SO2). Although none of the satellite missions were intended to be used for measurement of volcanic gas emission, specially adapted algorithms have produced time-averaged global emission budgets. These have confirmed that tropospheric plumes, produced from persistent degassing of weak sources, dominate the total emission of volcanic SO2. Although space-based observations have provided this global insight into some aspects of Earth's volcanism, it still has important limitations. The magnitude and short-term variability of lower-atmosphere emissions, historically less accessible from space, remain largely uncertain. Operational monitoring of volcanic plumes, at scales relevant for adequate surveillance, has been facilitated through the use of ground-based scanning differential optical absorption spectrometer (ScanDOAS) instruments since the beginning of this century, largely due to the coordinated effort of the Network for Observation of Volcanic and Atmospheric Change (NOVAC). In this study, we present a compilation of results of homogenized post-analysis of measurements of SO2 flux and plume parameters obtained during the period March 2005 to January 2017 of 32 volcanoes in NOVAC. This inventory opens a window into the short-term emission patterns of a diverse set of volcanoes in terms of magma composition, geographical location, magnitude of emission, and style of eruptive activity. We find that passive volcanic degassing is by no means a stationary process in time and that large sub-daily variability is observed in the flux of volcanic gases, which has implications for emission budgets produced using short-term, sporadic observations. The use of a standard evaluation method allows for intercomparison between different volcanoes and between ground- and space-based measurements of the same volcanoes. The emission of several weakly degassing volcanoes, undetected by satellites, is presented for the first time. We also compare our results with those reported in the literature, providing ranges of variability in emission not accessible in the past. The open-access data repository introduced in this article will enable further exploitation of this unique dataset, with a focus on volcanological research, risk assessment, satellite-sensor validation, and improved quantification of the prevalent tropospheric component of global volcanic emission. Datasets for each volcano are made available at https://novac.chalmers.se (last access: 1 October 2020) under the CC-BY 4 license or through the DOI (digital object identifier) links provided in Table 1.
  •  
4.
  • Coppola, D., et al. (författare)
  • Shallow system rejuvenation and magma discharge trends at Piton de la Fournaise volcano (La Réunion Island)
  • 2017
  • Ingår i: Earth and Planetary Science Letters. - : Elsevier BV. - 1385-013X .- 0012-821X. ; 463, s. 13-24
  • Tidskriftsartikel (refereegranskat)abstract
    • Basaltic magma chambers are often characterized by emptying and refilling cycles that influence their evolution in space and time, and the associated eruptive activity. During April 2007, the largest historical eruption of Piton de la Fournaise (Île de La Réunion, France) drained the shallow plumbing system (>240×106 m3) and resulted in collapse of the 1-km-wide summit crater. Following these major events, Piton de la Fournaise entered a seven-year long period of near-continuous deflation interrupted, in June 2014, by a new phase of significant inflation. By integrating multiple datasets (lava discharge rates, deformation, seismicity, gas flux, gas composition, and lava chemistry), we here show that the progressive migration of magma from a deeper (below sea level) storage zone gradually rejuvenated and pressurized the above-sea-level portion of the magmatic system consisting of a vertically-zoned network of relatively small-volume magma pockets. Continuous inflation provoked four small (
  •  
5.
  • Harris, A. J L, et al. (författare)
  • Effusive crises at Piton de la Fournaise 2014–2015: a review of a multi-national response model
  • 2017
  • Ingår i: Journal of Applied Volcanology. - : Springer Science and Business Media LLC. - 2191-5040. ; 6:1
  • Forskningsöversikt (refereegranskat)abstract
    • Many active European volcanoes and volcano observatories are island-based and located far from their administrative “mainland”. Consequently, Governments have developed multisite approaches, in which monitoring is performed by a network of individuals distributed across several national research centers. At a transnational level, multinational networks are also progressively emerging. Piton de la Fournaise (La Réunion Island, France) is one such example. Piton de la Fournaise is one of the most active volcanoes of the World, and is located at the greatest distance from its “mainland” than any other vulnerable “overseas” site, the observatory being 9365 km from its governing body in Paris. Effusive risk is high, so that a well-coordinated and rapid response involving near-real time delivery of trusted, validated and operational product for hazard assessment is critical. Here we review how near-real time assessments of lava flow propagation were developed using rapid provision, and update, of key source terms through a dynamic and open integration of near-real time remote sensing, modeling and measurement capabilities on both the national and international level. The multi-national system evolved during the five effusive crises of 2014–2015, and is now mature for Piton de la Fournaise. This review allows us to identify strong and weak points in an extended observatory system, and demonstrates that enhanced multi-national integration can have fundamental implications in scientific hazard assessment and response during an on-going effusive crisis.
  •  
6.
  • Koenig, Alkuin M., et al. (författare)
  • Observed in-plume gaseous elemental mercury depletion suggests significant mercury scavenging by volcanic aerosols
  • 2023
  • Ingår i: Environmental Science: Atmospheres. - 2634-3606. ; 3:10, s. 1418-1438
  • Tidskriftsartikel (refereegranskat)abstract
    • Terrestrial volcanism is known to emit mercury (Hg) into the atmosphere. However, despite many years of investigation, its net impact on the atmospheric Hg budget remains insufficiently constrained, in part because the transformations of Hg in volcanic plumes as they age and mix with background air are poorly understood. Here we report the observation of complete gaseous elemental mercury (GEM) depletion events in dilute and moderately aged (& SIM;3-7 hours) volcanic plumes from Piton de la Fournaise on Reunion Island. While it has been suggested that co-emitted bromine could, once photochemically activated, deplete GEM in a volcanic plume, we measured low bromine concentrations in both the gas- and particle-phase and observed complete GEM depletion even before sunrise, ruling out a leading role of bromine chemistry here. Instead, we hypothesize that the GEM depletions were mainly caused by gas-particle interactions with sulfate-rich volcanic particles (mostly of submicron size), abundantly present in the dilute plume. We consider heterogeneous GEM oxidation and GEM uptake by particles as plausible manifestations of such a process and derive empirical rate constants. By extrapolation, we estimate that volcanic aerosols may scavenge 210 Mg y(-1) (67-480 Mg y(-1)) of Hg from the atmosphere globally, acting effectively as atmospheric mercury sink. While this estimate is subject to large uncertainties, it highlights that Hg transformations in aging volcanic plumes must be better understood to determine the net impact of volcanism on the atmospheric Hg budget and Hg deposition pathways.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy