SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(DiMaio Frank) "

Sökning: WFRF:(DiMaio Frank)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • DiMaio, Frank, et al. (författare)
  • Modeling Symmetric Macromolecular Structures in Rosetta3
  • 2011
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 6:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Symmetric protein assemblies play important roles in many biochemical processes. However, the large size of such systems is challenging for traditional structure modeling methods. This paper describes the implementation of a general framework for modeling arbitrary symmetric systems in Rosetta3. We describe the various types of symmetries relevant to the study of protein structure that may be modeled using Rosetta's symmetric framework. We then describe how this symmetric framework is efficiently implemented within Rosetta, which restricts the conformational search space by sampling only symmetric degrees of freedom, and explicitly simulates only a subset of the interacting monomers. Finally, we describe structure prediction and design applications that utilize the Rosetta3 symmetric modeling capabilities, and provide a guide to running simulations on symmetric systems.
  •  
2.
  • Sgourakis, Nikolaos G., et al. (författare)
  • Determination of the Structures of Symmetric Protein Oligomers from NMR Chemical Shifts and Residual Dipolar Couplings
  • 2011
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 1520-5126 .- 0002-7863. ; 133:16, s. 6288-6298
  • Tidskriftsartikel (refereegranskat)abstract
    • Symmetric protein dimers, trimers, and higher-order cyclic oligomers play key roles in many biological processes. However, structural studies of oligomeric systems by solution NMR can be difficult due to slow tumbling of the system and the difficulty in identifying NOE interactions across protein interfaces. Here, we present an automated method (RosettaOligomers) for determining the solution structures of oligomeric systems using only chemical shifts, sparse NOEs, and domain orientation restraints from residual dipolar couplings (RDCs) without a need for a previously determined structure of the monomeric subunit. The method integrates previously developed Rosetta protocols for solving the structures of monomeric proteins using sparse NMR data and for predicting the structures of both nonintertwined and intertwined symmetric oligomers. We illustrated the performance of the method using a benchmark set of nine protein dimers, one trimer, and one tetramer with available experimental data and various interface topologies. The final converged structures are found to be in good agreement with both experimental data and previously published high-resolution structures. The new approach is more readily applicable to large oligomeric systems than conventional structure-determination protocols, which often require a large number of NOEs, and will likely become increasingly relevant as more high-molecular weight systems are studied by NMR
  •  
3.
  • Tyka, Michael D., et al. (författare)
  • Alternate States of Proteins Revealed by Detailed Energy Landscape Mapping
  • 2011
  • Ingår i: Journal of Molecular Biology. - : Elsevier BV. - 1089-8638 .- 0022-2836. ; 405:2, s. 607-618
  • Tidskriftsartikel (refereegranskat)abstract
    • What conformations do protein molecules populate in solution? Crystallography provides a high-resolution description of protein structure in the crystal environment, while NMR describes structure in solution but using less data. NMR structures display more variability, but is this because crystal contacts are absent or because of fewer data constraints? Here we report unexpected insight into this issue obtained through analysis of de tailed protein energy landscapes generated by large-scale, native-enhanced sampling of conformational space with Rosetta@home for 111 protein domains. In the absence of tightly associating binding partners or ligands, the lowest-energy Rosetta models were nearly all <2.5 angstrom C alpha RMSD from the experimental structure; this result demonstrates that structure prediction accuracy for globular proteins is limited mainly by the ability to sample close to the native structure. While the lowest-energy models are similar to deposited structures, they are not identical; the largest deviations are most often in regions involved in ligand, quaternary, or crystal contacts. For ligand binding proteins, the low energy models may resemble the apo structures, and for oligomeric proteins, the monomeric assembly intermediates. The deviations between the low energy models and crystal structures largely disappear when landscapes are computed in the context of the crystal lattice or multimer. The computed low-energy ensembles, with tight crystal-structure-like packing in the core, but more NMR-structure-like variability in loops, may in some cases resemble the native state ensembles of proteins better than individual crystal or NMR structures, and can suggest experimentally testable hypotheses relating alternative states and structural heterogeneity to function. (C) 2010 Elsevier Ltd. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy