SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Diaz Arrastia R) "

Sökning: WFRF:(Diaz Arrastia R)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zhou, XP, et al. (författare)
  • Non-coding variability at the APOE locus contributes to the Alzheimer's risk
  • 2019
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 3310-
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer’s disease (AD) is a leading cause of mortality in the elderly. While the coding change of APOE-ε4 is a key risk factor for late-onset AD and has been believed to be the only risk factor in the APOE locus, it does not fully explain the risk effect conferred by the locus. Here, we report the identification of AD causal variants in PVRL2 and APOC1 regions in proximity to APOE and define common risk haplotypes independent of APOE-ε4 coding change. These risk haplotypes are associated with changes of AD-related endophenotypes including cognitive performance, and altered expression of APOE and its nearby genes in the human brain and blood. High-throughput genome-wide chromosome conformation capture analysis further supports the roles of these risk haplotypes in modulating chromatin states and gene expression in the brain. Our findings provide compelling evidence for additional risk factors in the APOE locus that contribute to AD pathogenesis.
  •  
2.
  • Yuh, Esther L, et al. (författare)
  • Pathological computed tomography features associated with adverse outcomes after mild traumatic brain injury : A TRACK-TBI study with external validation in CENTER-TBI.
  • 2021
  • Ingår i: JAMA Neurology. - : American Medical Association (AMA). - 2168-6149 .- 2168-6157. ; 78:9, s. 1137-1148
  • Tidskriftsartikel (refereegranskat)abstract
    • IMPORTANCE: A head computed tomography (CT) with positive results for acute intracranial hemorrhage is the gold-standard diagnostic biomarker for acute traumatic brain injury (TBI). In moderate to severe TBI (Glasgow Coma Scale [GCS] scores 3-12), some CT features have been shown to be associated with outcomes. In mild TBI (mTBI; GCS scores 13-15), distribution and co-occurrence of pathological CT features and their prognostic importance are not well understood.OBJECTIVE: To identify pathological CT features associated with adverse outcomes after mTBI.DESIGN, SETTING, AND PARTICIPANTS: The longitudinal, observational Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) study enrolled patients with TBI, including those 17 years and older with GCS scores of 13 to 15 who presented to emergency departments at 18 US level 1 trauma centers between February 26, 2014, and August 8, 2018, and underwent head CT imaging within 24 hours of TBI. Evaluations of CT imaging used TBI Common Data Elements. Glasgow Outcome Scale-Extended (GOSE) scores were assessed at 2 weeks and 3, 6, and 12 months postinjury. External validation of results was performed via the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. Data analyses were completed from February 2020 to February 2021.EXPOSURES: Acute nonpenetrating head trauma.MAIN OUTCOMES AND MEASURES: Frequency, co-occurrence, and clustering of CT features; incomplete recovery (GOSE scores <8 vs 8); and an unfavorable outcome (GOSE scores <5 vs ≥5) at 2 weeks and 3, 6, and 12 months.RESULTS: In 1935 patients with mTBI (mean [SD] age, 41.5 [17.6] years; 1286 men [66.5%]) in the TRACK-TBI cohort and 2594 patients with mTBI (mean [SD] age, 51.8 [20.3] years; 1658 men [63.9%]) in an external validation cohort, hierarchical cluster analysis identified 3 major clusters of CT features: contusion, subarachnoid hemorrhage, and/or subdural hematoma; intraventricular and/or petechial hemorrhage; and epidural hematoma. Contusion, subarachnoid hemorrhage, and/or subdural hematoma features were associated with incomplete recovery (odds ratios [ORs] for GOSE scores <8 at 1 year: TRACK-TBI, 1.80 [95% CI, 1.39-2.33]; CENTER-TBI, 2.73 [95% CI, 2.18-3.41]) and greater degrees of unfavorable outcomes (ORs for GOSE scores <5 at 1 year: TRACK-TBI, 3.23 [95% CI, 1.59-6.58]; CENTER-TBI, 1.68 [95% CI, 1.13-2.49]) out to 12 months after injury, but epidural hematoma was not. Intraventricular and/or petechial hemorrhage was associated with greater degrees of unfavorable outcomes up to 12 months after injury (eg, OR for GOSE scores <5 at 1 year in TRACK-TBI: 3.47 [95% CI, 1.66-7.26]). Some CT features were more strongly associated with outcomes than previously validated variables (eg, ORs for GOSE scores <5 at 1 year in TRACK-TBI: neuropsychiatric history, 1.43 [95% CI .98-2.10] vs contusion, subarachnoid hemorrhage, and/or subdural hematoma, 3.23 [95% CI 1.59-6.58]). Findings were externally validated in 2594 patients with mTBI enrolled in the CENTER-TBI study.CONCLUSIONS AND RELEVANCE: In this study, pathological CT features carried different prognostic implications after mTBI to 1 year postinjury. Some patterns of injury were associated with worse outcomes than others. These results support that patients with mTBI and these CT features need TBI-specific education and systematic follow-up.
  •  
3.
  •  
4.
  •  
5.
  • Kals, Mart, et al. (författare)
  • A genome-wide association study of outcome from traumatic brain injury
  • 2022
  • Ingår i: EBioMedicine. - : Elsevier. - 2352-3964. ; 77
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Factors such as age, pre-injury health, and injury severity, account for less than 35% of outcome variability in traumatic brain injury (TBI). While some residual outcome variability may be attributable to genetic factors, published candidate gene association studies have often been underpowered and subject to publication bias.METHODS: We performed the first genome- and transcriptome-wide association studies (GWAS, TWAS) of genetic effects on outcome in TBI. The study population consisted of 5268 patients from prospective European and US studies, who attended hospital within 24 h of TBI, and satisfied local protocols for computed tomography.FINDINGS: The estimated heritability of TBI outcome was 0·26. GWAS revealed no genetic variants with genome-wide significance (p < 5 × 10-8), but identified 83 variants in 13 independent loci which met a lower pre-specified sub-genomic statistical threshold (p < 10-5). Similarly, none of the genes tested in TWAS met tissue-wide significance. An exploratory analysis of 75 published candidate variants associated with 28 genes revealed one replicable variant (rs1800450 in the MBL2 gene) which retained significance after correction for multiple comparison (p = 5·24 × 10-4).INTERPRETATION: While multiple novel loci reached less stringent thresholds, none achieved genome-wide significance. The overall heritability estimate, however, is consistent with the hypothesis that common genetic variation substantially contributes to inter-individual variability in TBI outcome. The meta-analytic approach to the GWAS and the availability of summary data allows for a continuous extension with additional cohorts as data becomes available.FUNDING: A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.
  •  
6.
  •  
7.
  • Mondello, Stefania, et al. (författare)
  • Blood-based protein biomarkers for the management of traumatic brain injuries in adults presenting to emergency departments with mild brain injury : A living systematic review and meta-analysis
  • 2021
  • Ingår i: Journal of Neurotrauma. - : Mary Ann Liebert. - 0897-7151 .- 1557-9042. ; 38:8, s. 1086-1106
  • Forskningsöversikt (refereegranskat)abstract
    • Accurate diagnosis of traumatic brain injury (TBI) is critical to effective management and intervention, but can be challenging in patients with mild TBI. A substantial number of studies have reported the use of circulating biomarkers as signatures for TBI, capable of improving diagnostic accuracy and clinical decision making beyond current practice standards. We performed a systematic review and meta-analysis to comprehensively and critically evaluate the existing body of evidence for the use of blood protein biomarkers (S100 calcium binding protein B [S100B], glial fibrillary acidic protein [GFAP], neuron specific enolase [NSE], ubiquitin C-terminal hydrolase-L1 [UCH-L1]. tau, and neurofilament proteins) for diagnosis of intracranial lesions on CT following mild TBI. Effects of potential confounding factors and differential diagnostic performance of the included markers were explored. Further, appropriateness of study design, analysis, quality, and demonstration of clinical utility were assessed. Studies published up to October 2016 were identified through searches of MEDLINE®, Embase, EBM Reviews, the Cochrane Library, World Health Organization (WHO), International Clinical Trials Registry Platform (ICTRP), and clinicaltrials.gov. Following screening of the identified articles, 26 were selected as relevant. We found that measurement of S100B can help informed decision making in the emergency department, possibly reducing resource use; however, there is insufficient evidence that any of the other markers is ready for clinical application. Our work pointed out serious problems in the design, analysis, and reporting of many of the studies, and identified substantial heterogeneity and research gaps. These findings emphasize the importance of methodologically rigorous studies focused on a biomarker's intended use, and defining standardized, validated, and reproducible approaches. The living nature of this systematic review, which will summarize key updated information as it becomes available, can inform and guide future implementation of biomarkers in the clinical arena. 
  •  
8.
  • Shahim, Pashtun, 1984, et al. (författare)
  • Association of Plasma Biomarker Levels With Their CSF Concentration and the Number and Severity of Concussions in Professional Athletes
  • 2022
  • Ingår i: Neurology. - : Ovid Technologies (Wolters Kluwer Health). - 0028-3878 .- 1526-632X. ; 99:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Objectives To examine whether the brain biomarkers total-tau (T-tau), glial fibrillary acidic protein (GFAP), and beta-amyloid (A beta) isomers 40 and 42 in plasma relate to the corresponding concentrations in CSF, blood-brain barrier integrity, and duration of postconcussion syndrome (PCS) due to repetitive head impacts (RHIs) in professional athletes. Method In this cross-sectional study, professional athletes with persistent PCS due to RHI (median of 1.5 years after recent concussion) and uninjured controls were assessed with blood and CSF sampling. The diagnosis of PCS was based on the Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition). The athletes were enrolled through information flyers about the study sent to the Swedish Hockey League (SHL) and the SHL Medicine Committee. The controls were enrolled through flyers at University of Gothenburg and Sahlgrenska University Hospital, Sweden. The participants underwent lumbar puncture and blood assessment at Sahlgrenska University Hospital. The main outcome measures were history of RHI and PCS severity (PCS >1 year vs PCS <1 year) in relation to plasma and CSF concentrations of T-tau, GFAP, A beta 40, and A beta 42. Plasma T-tau, GFAP, A beta 40, and A beta 42 were quantified using an ultrasensitive assay technology. Results A total of 47 participants (28 athletes [median age 28 years, range 18-52] with persistent PCS due to RHI and 19 controls [median age, 25 years, range 21-35]) underwent paired blood and CSF sampling. T-tau, A beta 40, and A beta 42 concentrations measured in plasma did not correlate with the corresponding CSF concentrations, while there was a correlation between plasma and CSF levels of GFAP (r = 0.45, p = 0.020). There were no significant relationships between plasma T-tau, GFAP, and blood-brain barrier integrity as measured by the CSF:serum albumin ratio. T-tau, GFAP, A beta 40, and A beta 42 measured in plasma did not relate to PCS severity. None of the markers measured in plasma correlated with number of concussions, except decreased A beta 42 in those with higher number of concussions (r = -0.40, p = 0.04). Discussion T-tau, GFAP, A beta 40, and A beta 42 measured in plasma do not correspond to CSF measures and may have limited utility for the evaluation of the late effects of RHI, compared with when measured in CSF. Classification of Evidence This study provides Class III evidence that in professional athletes with postconcussion symptoms, plasma concentrations of T-tau, GFAP, A beta 40, and A beta 42 are not informative in the diagnosis of late effects of repetitive head injuries.
  •  
9.
  • Shahim, Pashtun, 1984, et al. (författare)
  • Neurofilament light as a biomarker in traumatic brain injury
  • 2020
  • Ingår i: Neurology. - : Ovid Technologies (Wolters Kluwer Health). - 0028-3878 .- 1526-632X. ; 95:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective To determine whether serum neurofilament light (NfL) correlates with CSF NfL, traumatic brain injury (TBI) diagnosis, injury severity, brain volume, and diffusion tensor imaging (DTI) estimates of traumatic axonal injury (TAI). Methods Participants were prospectively enrolled in Sweden and the United States between 2011 and 2019. The Swedish cohort included 45 hockey players with acute concussion sampled at 6 days, 31 with repetitive concussion with persistent postconcussive symptoms (PCS) assessed with paired CSF and serum (median 1.3 years after concussion), 28 preseason controls, and 14 nonathletic controls. Our second cohort included 230 clinic-based participants (162 with TBI and 68 controls). Patients with TBI also underwent serum, functional outcome, and imaging assessments at 30 (n = 30), 90 (n = 48), and 180 (n = 59) days and 1 (n = 84), 2 (n = 57), 3 (n = 46), 4 (n = 38), and 5 (n = 29) years after injury. Results In athletes with paired specimens, CSF NfL and serum NfL were correlated (r = 0.71, p < 0.0001). CSF and serum NfL distinguished players with PCS >1 year from PCS <= 1 year (area under the receiver operating characteristic curve [AUROC] 0.81 and 0.80). The AUROC for PCS >1 year vs preseason controls was 0.97. In the clinic-based cohort, NfL at enrollment distinguished patients with mild from those with moderate and severe TBI (p < 0.001 and p = 0.048). Serum NfL decreased over the course of 5 years (beta = -0.09 log pg/mL, p < 0.0001) but remained significantly elevated compared to controls. Serum NfL correlated with measures of functional outcome, MRI brain atrophy, and DTI estimates of TAI. Conclusions Serum NfL shows promise as a biomarker for acute and repetitive sports-related concussion and patients with subacute and chronic TBI. Classification of evidence This study provides Class III evidence that increased concentrations of NfL distinguish patients with TBI from controls.
  •  
10.
  • Shahim, Pashtun, 1984, et al. (författare)
  • Time course and diagnostic utility of NfL, tau, GFAP, and UCH-L1 in subacute and chronic TBI
  • 2020
  • Ingår i: Neurology. - : Ovid Technologies (Wolters Kluwer Health). - 0028-3878 .- 1526-632X. ; 95:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective To determine whether neurofilament light (NfL), glial fibrillary acidic protein (GFAP), tau, and ubiquitin C-terminal hydrolase-L1 (UCH-L1) measured in serum relate to traumatic brain injury (TBI) diagnosis, injury severity, brain volume, and diffusion tensor imaging (DTI) measures of traumatic axonal injury (TAI) in patients with TBI. Methods Patients with TBI (n = 162) and controls (n = 68) were prospectively enrolled between 2011 and 2019. Patients with TBI also underwent serum, functional outcome, and imaging assessments at 30 (n = 30), 90 (n = 48), and 180 (n = 59) days, and 1 (n = 84), 2 (n = 57), 3 (n = 46), 4 (n = 38), and 5 (n = 29) years after injury. Results At enrollment, patients with TBI had increased serum NfL compared to controls (p < 0.0001). Serum NfL decreased over the course of 5 years but remained significantly elevated compared to controls. Serum NfL at 30 days distinguished patients with mild, moderate, and severe TBI from controls with an area under the receiver-operating characteristic curve (AUROC) of 0.84, 0.92, and 0.92, respectively. At enrollment, serum GFAP was elevated in patients with TBI compared to controls (p < 0.001). GFAP showed a biphasic release in serum, with levels decreasing during the first 6 months of injury but increasing over the subsequent study visits. The highest AUROC for GFAP was measured at 30 days, distinguishing patients with moderate and severe TBI from controls (both 0.89). Serum tau and UCH-L1 showed weak associations with TBI severity and neuroimaging measures. Longitudinally, serum NfL was the only biomarker that was associated with the likely rate of MRI brain atrophy and DTI measures of progression of TAI. Conclusions Serum NfL shows greater diagnostic and prognostic utility than GFAP, tau, and UCH-L1 for subacute and chronic TBI. Classification of evidence This study provides Class III evidence that serum NfL distinguishes patients with mild TBI from healthy controls.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy