SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dietrich Franciele) "

Sökning: WFRF:(Dietrich Franciele)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dietrich-Zagonel, Franciele, et al. (författare)
  • Stimulation of Tendon Healing With Delayed Dexamethasone Treatment Is Modified by the Microbiome
  • 2018
  • Ingår i: American Journal of Sports Medicine. - : Sage Publications. - 0363-5465 .- 1552-3365. ; 46:13, s. 3281-3287
  • Tidskriftsartikel (refereegranskat)abstract
    • Background:The immune system reflects the microbiome (microbiota). Modulation of the immune system during early tendon remodeling by dexamethasone treatment can improve rat Achilles tendon healing. The authors tested whether changes in the microbiota could influence the effect of dexamethasone treatment.Hypothesis:A change in microbiome would influence the response to dexamethasone on regenerate remodeling, specifically tendon material properties (peak stress).Study Design:Controlled laboratory study.Methods:Specific opportunist and pathogen-free female rats were housed separately (n = 41) or together with specific pathogen-free rats carrying opportunistic microbes such as Staphylococcus aureus (n = 41). After 6 weeks, all co-housed rats appeared healthy but now carried S aureus. Changes in the gut bacterial flora were tested by API and RapID biochemical tests. All rats (clean and contaminated) underwent Achilles tendon transection under aseptic conditions. Flow cytometry was performed 8 days postoperatively on tendon tissue. Sixty rats received subcutaneous dexamethasone or saline injections on days 5 through 9 after transection. The tendons were tested mechanically on day 12. The predetermined primary outcome was the interaction between contamination and dexamethasone regarding peak stress, tested by 2-way analysis of variance.Results:Dexamethasone increased peak stress in all groups but more in contaminated rats (105%) than in clean rats (53%) (interaction, P = .018). A similar interaction was found for an estimate of elastic modulus (P = .021). Furthermore, dexamethasone treatment reduced transverse area but had small effects on peak force and stiffness. In rats treated with saline only, contamination reduced peak stress by 16% (P = .04) and elastic modulus by 35% (P = .004). Contamination led to changes in the gut bacterial flora and higher levels of T cells (CD3+CD4+) in the healing tendon (P < .05).Conclusion:Changes in the microbiome influence tendon healing and enhance the positive effects of dexamethasone treatment during the early remodeling phase of tendon healing.Clinical Relevance:The positive effect of dexamethasone on early tendon remodeling in rats is strikingly strong. If similar effects could be shown in humans, immune modulation by a few days of systemic corticosteroids, or more specific compounds, could open new approaches to rehabilitation after tendon injury.
  •  
2.
  • Bernhardsson, Magnus, 1989-, et al. (författare)
  • Depletion of cytotoxic (CD8+) T cells impairs implant fixation in rat cancellous bone
  • 2019
  • Ingår i: Journal of Orthopaedic Research. - : John Wiley & Sons. - 0736-0266 .- 1554-527X. ; 37:4, s. 805-811
  • Tidskriftsartikel (refereegranskat)abstract
    • As cytotoxic (CD8(+)) T cells seem to impair shaft fracture healing, we hypothesized that depletion of CD8(+) cells would instead improve healing of cancellous bone. Additionally, we also tested if CD8-depletion would influence the healing of ruptured Achilles tendons. Rats received a single injection of either anti-CD8 antibodies or saline and put through surgery 24 h later. Three different surgical interventions were performed as follows: (1) a drill hole in the proximal tibia with microCT (BV/TV) to assess bone formation; (2) a screw in the proximal tibia with mechanical evaluation (pull-out force) to assess fracture healing; (3) Achilles tendon transection with mechanical evaluation (force-at-failure) to assess tendon healing. Furthermore, CD8-depletion was confirmed with flow cytometry on peripheral blood. Flow cytometric analysis confirmed depletion of CD8(+) cells (p amp;lt; 0.001). Contrary to our hypothesis, depletion of CD8(+) cells reduced the implant pull-out force by 19% (p amp;lt; 0.05) and stiffness by 34% (p amp;lt; 0.01), although the bone formation in the drill holes was the same as in the controls. Tendon healing was unaffected by CD8-depletion. Our results suggest that CD8(+) cells have an important part in cancellous bone healing.
  •  
3.
  •  
4.
  • Dietrich, Franciele, et al. (författare)
  • Dexamethasone Enhances Achilles Tendon Healing in an Animal Injury Model, and the Effects Are Dependent on Dose, Administration Time, and Mechanical Loading Stimulation
  • 2022
  • Ingår i: American Journal of Sports Medicine. - : Sage Publications Inc. - 0363-5465 .- 1552-3365. ; 50:5, s. 1306-1316
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Corticosteroid treatments such as dexamethasone are commonly used to treat tendinopathy but with mixed outcomes. Although this treatment can cause tendon rupture, it can also stimulate the tendon to heal. However, the mechanisms behind corticosteroid treatment during tendon healing are yet to be understood. Purpose: To comprehend when and how dexamethasone treatment can ameliorate injured tendons by using a rat model of Achilles tendon healing. Study Design: Controlled laboratory study. Methods: An overall 320 rats were used for a sequence of 6 experiments. We investigated whether the drug effect was time-, dose-, and load-dependent. Additionally, morphological data and drug administration routes were examined. Healing tendons were tested mechanically or used for histological examination 12 days after transection. Blood was collected for flow cytometry analysis in 1 experiment. Results: We found that the circadian rhythm and drug injection timing influenced the treatment outcome. Dexamethasone treatment at the right time point (days 7-11) and dose (0.1 mg/kg) significantly improved the material properties of the healing tendon, while the adverse effects were reduced. Local dexamethasone treatment did not lead to increased peak stress, but it triggered systemic granulocytosis and lymphopenia. Mechanical loading (full or moderate) is essential for the positive effects of dexamethasone, as complete unloading leads to the absence of improvements. Conclusion: We conclude that dexamethasone treatment to improve Achilles tendon healing is dose- and time-dependent, and positive effects are perceived even in a partly unloaded condition.
  •  
5.
  • Dietrich, Franciele, et al. (författare)
  • Effect of platelet-rich plasma on rat Achilles tendon healing is related to microbiota
  • 2017
  • Ingår i: Acta Orthopaedica. - : TAYLOR & FRANCIS LTD. - 1745-3674 .- 1745-3682. ; 88:4, s. 416-421
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and purpose - In 3 papers in Acta Orthopaedica 10 years ago, we described that platelet-rich plasma (PRP) improves tendon healing in a rat Achilles transection model. Later, we found that microtrauma has similar effects, probably acting via inflammation. This raised the suspicion that the effect ascribed to growth factors within PRP could instead be due to unspecific influences on inflammation. While testing this hypothesis, we noted that the effect seemed to be related to the microbiota. Material and methods - We tried to reproduce our old findings with local injection of PRP 6h after tendon transection, followed by mechanical testing after 11 days. This failed. After fruitless variations in PRP production protocols, leukocyte concentration, and physical activity, we finally tried rats carrying potentially pathogenic bacteria. In all, 242 rats were used. Results - In 4 consecutive experiments on pathogen-free rats, no effect of PRP on healing was found. In contrast, apparently healthy rats carrying Staphylococcus aureus showed increased strength of the healing tendon after PRP treatment. These rats had higher levels of cytotoxic T-cells in their spleens. Interpretation - The failure to reproduce older experiments in clean rats was striking, and the difference in response between these and Staphylococcus-carrying rats suggests that the PRP effect is dependent on the immune status. PRP functions may be more complex than just the release of growth factors. Extrapolation from our previous findings with PRP to the situation in humans therefore becomes even more uncertain.1
  •  
6.
  • Dietrich, Franciele, et al. (författare)
  • Effect of storage and preconditioning of healing rat Achilles tendon on structural and mechanical properties
  • 2021
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Tendon tissue storage and preconditioning are often used in biomechanical experiments and whether this generates alterations in tissue properties is essential to know. The effect of storage and preconditioning on dense connective tissues, like tendons, is fairly understood. However, healing tendons are unlike and contain a loose connective tissue. Therefore, we investigated if storage of healing tendons in the fridge or freezer changed the mechanical properties compared to fresh tendons, using a pull-to-failure or a creep test. Tissue morphology and cell viability were also evaluated. Additionally, two preconditioning levels were tested. Rats underwent Achilles tendon transection and were euthanized 12 days postoperatively. Statistical analyzes were done with one-way ANOVA or Student’s t-test. Tissue force and stress were unaltered by storage and preconditioning compared to fresh samples, while high preconditioning increased the stiffness and modulus (p ≤ 0.007). Furthermore, both storage conditions did not modify the viscoelastic properties of the healing tendon, but altered transverse area, gap length, and water content. Cell viability was reduced after freezing. In conclusion, preconditioning on healing tissues can introduce mechanical data bias when having extensive tissue strength diversity. Storage can be used before biomechanical testing if structural properties are measured on the day of testing.
  •  
7.
  • Dietrich, Franciele, et al. (författare)
  • Response to mechanical loading in rat Achilles tendon healing is influenced by the microbiome
  • 2020
  • Ingår i: PLOS ONE. - : PUBLIC LIBRARY SCIENCE. - 1932-6203. ; 15:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We have previously shown that changes in the microbiome influence how the healing tendon responds to different treatments. The aim of this study was to investigate if changes in the microbiome influence the response to mechanical loading during tendon healing. 90 Sprague-Dawley rats were used. Specific Opportunist and Pathogen Free (SOPF) rats were co-housed with Specific Pathogen Free (SPF) rats, carrying Staphylococcus aureus and other opportunistic microbes. After 6 weeks of co-housing, the SOPF rats were contaminated which was confirmed by Staphylococcus aureus growth. Clean SOPF rats were used as controls. The rats were randomized to full loading or partial unloading by Botox injections in their calf muscles followed by complete Achilles tendon transection. Eight days later, the healing tendons were tested mechanically. The results were analysed by a 2-way ANOVA with interaction between loading and contamination on peak force as the primary outcome and there was an interaction for both peak force (p = 0.049) and stiffness (p = 0.033). Furthermore, partial unloading had a profound effect on most outcome variables. In conclusion, the response to mechanical loading during tendon healing is influenced by changes in the microbiome. Studies aiming for clinical relevance should therefore consider the microbiome of laboratory animals.
  •  
8.
  • Eliasson, Pernilla T., et al. (författare)
  • Statin treatment increases the clinical risk of tendinopathy through matrix metalloproteinase release - a cohort study design combined with an experimental study
  • 2019
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent experimental evidence indicates potential adverse effects of statin treatment on tendons but previous clinical studies are few and inconclusive. The aims of our study were, first, to determine whether statin use in a cohort design is associated with tendinopathy disorders, and second, to experimentally understand the pathogenesis of statin induced tendinopathy. We studied association between statin use and different tendon injuries in two population-based Swedish cohorts by time-dependent Cox regression analysis. Additionally, we tested simvastatin in a 3D cell culture model with human tenocytes. Compared with never-users, current users of statins had a higher incidence of trigger finger with adjusted hazard ratios (aHRs) of 1.50 for men (95% confidence interval [CI] 1.21-1.85) and 1.21 (1.02-1.43) for women. We also found a higher incidence of shoulder tendinopathy in both men (aHR 1.43; 1.24-1.65) and women (aHR 1.41; 0.97-2.05). Former users did not confer a higher risk of tendinopathies. In vitro experiments revealed an increased release of matrix metalloproteinase (MMP)-1 and MMP-13 and a weaker, disrupted matrix after simvastatin exposure. Current statin use seems to increase the risk of trigger finger and shoulder tendinopathy, possibly through increased MMP release, and subsequently, a weakened tendon matrix which will be more prone to injuries.
  •  
9.
  • Hammerman, Malin, et al. (författare)
  • Different mechanisms activated by mild versus strong loading in rat Achilles tendon healing
  • 2018
  • Ingår i: PLOS ONE. - : PUBLIC LIBRARY SCIENCE. - 1932-6203. ; 13:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Mechanical loading stimulates Achilles tendon healing. However, various degrees of loading appear to have different effects on the mechanical properties of the healing tendon, and strong loading might create microdamage in the tissue. This suggests that different mechanisms might be activated depending on the magnitude of loading. The aim of this study was to investigate these mechanisms further. Methods Female rats had their right Achilles tendon cut transversely and divided into three groups: 1) unloading (calf muscle paralysis by Botox injections, combined with joint fixation by a steel-orthosis), 2) mild loading (Botox only), 3) strong loading (free cage activity). Gene expression was analyzed by PCR, 5 days post-injury, and mechanical testing 8 days post-injury. The occurrence of microdamage was analyzed 3, 5, or 14 days post-injury, by measuring leakage of injected fluorescence-labelled albumin in the healing tendon tissue. Results Peak force, peak stress, and elastic modulus of the healing tendons gradually improved with increased loading as well as the expression of extracellular matrix genes. In contrast, only strong loading increased transverse area and affected inflammation genes. Strong loading led to higher fluorescence (as a sign of microdamage) compared to mild loading at 3 and 5 days post-injury, but not at 14 days. Discussion Our results show that strong loading improves both the quality and quantity of the healing tendon, while mild loading only improves the quality. Strong loading also induces microdamage and alters the inflammatory response. This suggests that mild loading exert its effect via mechanotransduction mechanisms, while strong loading exert its effect both via mechanotransduction and the creation of microdamage. Conclusion In conclusion, mild loading is enough to increase the quality of the healing tendon without inducing microdamage and alter the inflammation in the tissue. This supports the general conception that early mobilization of a ruptured tendon in patients is advantageous.
  •  
10.
  • Herchenhan, Andreas, et al. (författare)
  • Early Growth Response Genes Increases Rapidly After Mechanical Overloading and Unloading in Tendon Constructs
  • 2020
  • Ingår i: Journal of Orthopaedic Research. - : WILEY. - 0736-0266 .- 1554-527X. ; 38:1, s. 173-181
  • Tidskriftsartikel (refereegranskat)abstract
    • Tendon cells exist in a dense extracellular matrix and mechanical loading is important for the strength development of this matrix. We therefore use a three-dimensional (3D) culture system for tendon formation in vitro. The objectives of this study were to elucidate the temporal expression of tendon-related genes during the formation of artificial tendons in vitro and to investigate if early growth response-1 (EGR1), EGR2, FOS, and cyclooxygenase-1 and -2 (PTGS1 and PTGS2) are sensitive to mechanical loading. First, we studied messenger RNA (mRNA) levels of several tendon-related genes during formation of tendon constructs. Second, we studied the mRNA levels of, for example, EGR1 and EGR2 after different degrees of loading; dynamic physiologic-range loading (2.5% strain), dynamic overloading (approximately 10% strain), or tension release. The gene expression for tendon-related genes (i.e., EGR2, MKX, TNMD, COL3A1) increased with time after seeding into this 3D model. EGR1, EGR2, FOS, PTGS1, and PTGS2 did not respond to physiologic-range loading. But overloading (and tension release) lead to elevated levels of EGR1 and EGR2 (p amp;lt;= 0.006). FOS and PTGS2 were increased after overloading (both p amp;lt; 0.007) but not after tension release (p = 0.06 and 0.08). In conclusion, the expression of tendon-related genes increases during the formation of artificial tendons in vitro, including EGR2. Furthermore, the gene expression of EGR1 and EGR2 in human tendon cells appear to be sensitive to overloading and unloading but did not respond to the single episode of physiologic-range loading. These findings could be helpful for the understanding of tendon tensional homeostasis. (c) 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy