SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dietzel R.) "

Sökning: WFRF:(Dietzel R.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Nelson, G., et al. (författare)
  • QUAREP-LiMi: A community-driven initiative to establish guidelines for quality assessment and reproducibility for instruments and images in light microscopy
  • 2021
  • Ingår i: Journal of Microscopy. - : Wiley. - 0022-2720 .- 1365-2818. ; 284:1, s. 56-73
  • Tidskriftsartikel (refereegranskat)abstract
    • A modern day light microscope has evolved from a tool devoted to making primarily empirical observations to what is now a sophisticated , quantitative device that is an integral part of both physical and life science research. Nowadays, microscopes are found in nearly every experimental laboratory. However, despite their prevalent use in capturing and quantifying scientific phenomena, neither a thorough understanding of the principles underlying quantitative imaging techniques nor appropriate knowledge of how to calibrate, operate and maintain microscopes can be taken for granted. This is clearly demonstrated by the well-documented and widespread difficulties that are routinely encountered in evaluating acquired data and reproducing scientific experiments. Indeed, studies have shown that more than 70% of researchers have tried and failed to repeat another scientist's experiments, while more than half have even failed to reproduce their own experiments. One factor behind the reproducibility crisis of experiments published in scientific journals is the frequent underreporting of imaging methods caused by a lack of awareness and/or a lack of knowledge of the applied technique. Whereas quality control procedures for some methods used in biomedical research, such as genomics (e.g. DNA sequencing, RNA-seq) or cytometry, have been introduced (e.g. ENCODE), this issue has not been tackled for optical microscopy instrumentation and images. Although many calibration standards and protocols have been published, there is a lack of awareness and agreement on common standards and guidelines for quality assessment and reproducibility. In April 2020, the QUality Assessment and REProducibility for instruments and images in Light Microscopy (QUAREP-LiMi) initiative was formed. This initiative comprises imaging scientists from academia and industry who share a common interest in achieving a better understanding of the performance and limitations of microscopes and improved quality control (QC) in light microscopy. The ultimate goal of the QUAREP-LiMi initiative is to establish a set of common QC standards, guidelines, metadata models and tools, including detailed protocols, with the ultimate aim of improving reproducible advances in scientific research. This White Paper (1) summarizes the major obstacles identified in the field that motivated the launch of the QUAREP-LiMi initiative; (2) identifies the urgent need to address these obstacles in a grassroots manner, through a community of stakeholders including, researchers, imaging scientists, bioimage analysts, bioimage informatics developers, corporate partners, funding agencies, standards organizations, scientific publishers and observers of such; (3) outlines the current actions of the QUAREP-LiMi initiative and (4) proposes future steps that can be taken to improve the dissemination and acceptance of the proposed guidelines to manage QC. To summarize, the principal goal of the QUAREP-LiMi initiative is to improve the overall quality and reproducibility of light microscope image data by introducing broadly accepted standard practices and accurately captured image data metrics.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Redaa, A., et al. (författare)
  • Testing Nano-Powder and Fused-Glass Mineral Reference Materials for In Situ Rb-Sr Dating of Glauconite, Phlogopite, Biotite and Feldspar via LA-ICP-MS/MS
  • 2023
  • Ingår i: Geostandards and Geoanalytical Research. - : Wiley. - 1639-4488 .- 1751-908X. ; 47:1, s. 23-48
  • Tidskriftsartikel (refereegranskat)abstract
    • Reference materials (RMs) with well-characterised composition are necessary for reliable quantification and quality control of isotopic analyses of geological samples. For in situ Rb-Sr analysis of silicate minerals via laser ablation inductively coupled plasma tandem mass spectrometry (LA-ICP-MS/MS) with a collision/reaction cell, there is a general lack of mineral-specific and matrix-matched RMs, which limits wider application of this new laser-based dating technique to certain minerals. In this work, pressed nano-powder pellets (NP) of four RMs, GL-O (glauconite), Mica-Mg (phlogopite), Mica-Fe (biotite) and FK-N (K-feldspar), were analysed and tested for in situ Rb-Sr dating, complemented by isotope dilution (ID) MC-ICP-MS Rb-Sr analyses of GL-O and Mica-Mg. In addition, we attempted to develop alternative flux-free and fused 'mineral glasses' from the above RMs for in situ Rb-Sr dating applications. Overall, the results of this study showed that among the above RMs only two NP (Mica-Mg-NP and GL-O-NP) were suitable and robust for in situ dating applications. These two nano-powder reference materials, Mica-Mg-NP and GL-O-NP, were thus used as primary RMs to normalise and determine Rb-Sr ages for three natural minerals: MDC phlogopite and GL-O glauconite grains, and also Mica-Fe-NP (biotite). Our in situ analyses of the above RMs yielded Rb-Sr ages that are in good agreement (within 8%) of published ages, which suggests that both Mica-Mg-NP and GL-O-NP are suitable RMs for in situ Rb-Sr dating of phlogopite, glauconite and biotite. However, using secondary RMs is recommended to monitor the quality of the obtained ages.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy