SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dieval C.) "

Sökning: WFRF:(Dieval C.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andrews, David J., et al. (författare)
  • Oblique reflections in the Mars Express MARSIS data set : Stable density structures in the Martian ionosphere
  • 2014
  • Ingår i: Journal of Geophysical Research-Space Physics. - 2169-9380. ; 119:5, s. 3944-3960
  • Tidskriftsartikel (refereegranskat)abstract
    • The Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) onboard the European Space Agency's Mars Express (MEX) spacecraft routinely detects evidence of localized plasma density structures in the Martian dayside ionosphere. Such structures, likely taking the form of spatially extended elevations in the plasma density at a given altitude, give rise to oblique reflections in the Active Ionospheric Sounder data. These structures are likely related to the highly varied Martian crustal magnetic field. In this study we use the polar orbit of MEX to investigate the repeatability of the ionospheric structures producing these anomalous reflections, examining data taken in sequences of multiple orbits which pass over the same regions of the Martian surface under similar solar illuminations, within intervals lasting tens of days. Presenting three such examples, or case studies, we show for the first time that these oblique reflections are often incredibly stable, indicating that the underlying ionospheric structures are reliably reformed in the same locations and with qualitatively similar parameters. The visibility, or lack thereof, of a given oblique reflection on a single orbit can generally be attributed to variations in the crustal field within the ionosphere along the spacecraft trajectory. We show that, within these examples, oblique reflections are generally detected whenever the spacecraft passes over regions of intense near-radial crustal magnetic fields (i.e., with a cusp-like configuration). The apparent stability of these structures is an important feature that must be accounted for in models of their origin.
  •  
2.
  • Dieval, C., et al. (författare)
  • MARSIS remote sounding of localized density structures in the dayside Martian ionosphere : A study of controlling parameters
  • 2015
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 120:9, s. 8125-8145
  • Tidskriftsartikel (refereegranskat)abstract
    • Enhanced topside electron densities in the dayside Martian ionosphere have been repetitively observed in areas of near-radial crustal magnetic fields, for periods of tens of days, indicating their long-term spatial and temporal stability despite changing solar wind conditions. We perform a statistical study of these density structures using the ionospheric mode of the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) onboard Mars Express. We estimate the apparent extents of these structures relative to the altitude of the surrounding ionosphere. The apex of the density structures often lies higher than the surrounding ionosphere (median vertical extent of 18km), which indicates upwellings. These structures are much wider than they are high, with latitudinal scales of several degrees. The radar reflector regions are observed above both moderate and strong magnetic anomalies, and their precise locations and latitudinal extents match quite well with the locations and latitudinal extents of magnetic structures of given magnetic polarity (oblique to vertical fields), which happen to be regions where the field lines are open part of the time. The majority of the density structures occur in regions where ionospheric plasma is dominant, indicating closed field regions shielded from shocked solar wind plasma.
  •  
3.
  • Shematovich, V.I., et al. (författare)
  • He2+ transport in the Martian upper atmosphere with an induced magnetic field
  • 2013
  • Ingår i: Journal of Geophysical Research - Space Physics. - : John Wiley & Sons. - 2169-9380 .- 2169-9402. ; 118:3, s. 1231-1242
  • Tidskriftsartikel (refereegranskat)abstract
    • Solar wind helium may be a significant source of neutral helium in the Martian atmosphere. The precipitating particles also transfer mass, energy, and momentum. To investigate the transport of He2+ in the upper atmosphere of Mars, we have applied the direct simulation Monte Carlo method to solve the kinetic equation. We calculate the upward He, He+, and He2+ fluxes, resulting from energy spectra of the downgoing He2+ observed below 500 km altitude by the Analyzer of Space Plasmas and Energetic Atoms 3 instrument onboard Mars Express. The particle flux of the downward moving He2+ ions was 1–2 × 106 cm–2 s–1, and the energy flux is equal to 9–10 × 10–3 erg cm–2 s–1. The calculations of the upward flux have been made for the Martian atmosphere during solar minimum. It was found, that if the induced magnetic field is not introduced in the simulations the precipitating He2+ ions are not backscattered at all by the Martian upper atmosphere. If we include a 20 nT horizontal magnetic field, a typical field measured by Mars Global Surveyor in the altitude range of 85–500 km, we find that up to 30%–40% of the energy flux of the precipitating He2+ ions is backscattered depending on the velocity distribution of the precipitating particles. We thus conclude that the induced magnetic field plays a crucial role in the transport of charged particles in the upper atmosphere of Mars and, therefore, that it determines the energy deposition of the solar wind.
  •  
4.
  • Shematovich, V.I., et al. (författare)
  • Protons and hydrogen atoms transport in the Martian upper atmosphere with an induced magnetic field
  • 2011
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 116, s. A11320-
  • Tidskriftsartikel (refereegranskat)abstract
    • We have applied the Direct Simulation Monte Carlo method to solve the kinetic equation for the H/H+ transport in the upper Martian atmosphere. We calculate the upward H and H+ fluxes, values that can be measured, and the altitude profile of the energy deposition to be used to understand the energy balance in the Martian atmosphere. The calculations of the upward flux have been made for the Martian atmosphere during solar minimum. We use an energy spectrum of the down moving protons in the altitude range 355–437 km adopted from the Mars Express Analyzer of Space Plasma and Energetic Atoms measurements in the range 700 eV–20 keV. The particle and energy fluxes of the downward moving protons were equal to 3.0 × 106 cm−2 s−1 and 1.4 × 10−2 erg cm−2 s−1. It was found that 22% of particle flux and 12% of the energy flux of the precipitating protons is backscattered by the Martian upper atmosphere, if no induced magnetic field is taken into account in the simulations. If we include a 20 nT horizontal magnetic field, a typical field measured by Mars Global Surveyor in the altitude range of 85–500 km, we find that up to 40%–50% of the energy flux of the precipitating protons is backscattered depending on the velocity distribution of the precipitating protons. We thus conclude that the induced magnetic field plays a crucial role in the transport of charged particles in the upper atmosphere of Mars and, therefore, that it determines the energy deposition of the solar wind.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy