SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dion Cote Anne Marie) "

Sökning: WFRF:(Dion Cote Anne Marie)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kinsella, Cormac M., et al. (författare)
  • Programmed DNA elimination of germline development genes in songbirds
  • 2019
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • In some eukaryotes, germline and somatic genomes differ dramatically in their composition. Here we characterise a major germline-soma dissimilarity caused by a germline-restricted chromosome (GRC) in songbirds. We show that the zebra finch GRC contains >115 genes paralogous to single-copy genes on 18 autosomes and the Z chromosome, and is enriched in genes involved in female gonad development. Many genes are likely functional, evidenced by expression in testes and ovaries at the RNA and protein level. Using comparative genomics, we show that genes have been added to the GRC over millions of years of evolution, with embryonic development genes bicc1 and trim71 dating to the ancestor of songbirds and dozens of other genes added very recently. The somatic elimination of this evolutionarily dynamic chromosome in songbirds implies a unique mechanism to minimise genetic conflict between germline and soma, relevant to antagonistic pleiotropy, an evolutionary process underlying ageing and sexual traits.
  •  
2.
  • Marsit, Souhir, et al. (författare)
  • Did Mitochondria Kill the Frog?
  • 2018
  • Ingår i: Developmental Cell. - : Elsevier BV. - 1534-5807 .- 1878-1551. ; 44:5, s. 539-541
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Genomic divergence can cause reproductive isolation between species. The molecular mechanisms underlying reproductive isolation can thus reveal which genomic features evolve rapidly and become unstable or incompatible in hybrids. In a recent paper in Nature, Gibeaux et al. (2018) report paternal genome instability and metabolic imbalance in hybrids between frog species.
  •  
3.
  • McGurk, Michael P., et al. (författare)
  • Rapid evolution at the Drosophila telomere : transposable element dynamics at an intrinsically unstable locus
  • 2021
  • Ingår i: Genetics. - : Oxford University Press. - 0016-6731 .- 1943-2631. ; 217:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Drosophila telomeres have been maintained by three families of active transposable elements (TEs), HeT-A, TAHRE, and TART, collectively referred to as HTTs, for tens of millions of years, which contrasts with an unusually high degree of HTT interspecific variation. While the impacts of conflict and domestication are often invoked to explain HTT variation, the telomeres are unstable structures such that neutral mutational processes and evolutionary tradeoffs may also drive HTT evolution. We leveraged population genomic data to analyze nearly 10,000 HTT insertions in 85 Drosophila melanogaster genomes and compared their variation to other more typical TE families. We observe that occasional large-scale copy number expansions of both HTTs and other TE families occur, highlighting that the HTTs are, like their feral cousins, typically repressed but primed to take over given the opportunity. However, large expansions of HTTs are not caused by the runaway activity of any particular HTT subfamilies or even associated with telomere-specific TE activity, as might be expected if HTTs are in strong genetic conflict with their hosts. Rather than conflict, we instead suggest that distinctive aspects of HTT copy number variation and sequence diversity largely reflect telomere instability, with HTT insertions being lost at much higher rates than other TEs elsewhere in the genome. We extend previous observations that telomere deletions occur at a high rate, and surprisingly discover that more than one-third do not appear to have been healed with an HTT insertion. We also report that some HTT families may be preferentially activated by the erosion of whole telomeres, implying the existence of HTT-specific host control mechanisms. We further suggest that the persistent telomere localization of HTTs may reflect a highly successful evolutionary strategy that trades away a stable insertion site in order to have reduced impact on the host genome. We propose that HTT evolution is driven by multiple processes, with niche specialization and telomere instability being previously underappreciated and likely predominant.
  •  
4.
  • Suh, Alexander, et al. (författare)
  • New Perspectives on the Evolution of Within-Individual Genome Variation and Germline/Soma Distinction
  • 2021
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press. - 1759-6653. ; 13:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Genomes can vary significantly even within the same individual. The underlying mechanisms are manifold, ranging from somatic mutation and recombination, development-associated ploidy changes and genetic bottlenecks, over to programmed DNA elimination during germline/soma differentiation. In this perspective piece, we briefly reviewrecent developments in the study ofwithinindividual genome variation in eukaryotes and prokaryotes. We highlight a Society forMolecular Biology and Evolution 2020 virtual symposium entitled "Within-individual genome variation and germline/soma distinction" and the present Special Section of the same name in Genome Biology and Evolution, together fostering cross-taxon synergies in the field to identify and tackle key open questions in the understanding of within-individual genome variation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy