SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dittmann Elke) "

Sökning: WFRF:(Dittmann Elke)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Voß, Björn, et al. (författare)
  • Insights into the Physiology and Ecology of the Brackish-Water-Adapted Cyanobacterium Nodularia spumigena CCY9414 Based on a Genome-Transcriptome Analysis
  • 2013
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Nodularia spumigena is a filamentous diazotrophic cyanobacterium that dominates the annual late summer cyanobacterial blooms in the Baltic Sea. But N. spumigena also is common in brackish water bodies worldwide, suggesting special adaptation allowing it to thrive at moderate salinities. A draft genome analysis of N. spumigena sp. CCY9414 yielded a single scaffold of 5,462,271 nucleotides in length on which genes for 5,294 proteins were annotated. A subsequent strand-specific transcriptome analysis identified more than 6,000 putative transcriptional start sites (TSS). Orphan TSSs located in intergenic regions led us to predict 764 non-coding RNAs, among them 70 copies of a possible retrotransposon and several potential RNA regulators, some of which are also present in other N2-fixing cyanobacteria. Approximately 4% of the total coding capacity is devoted to the production of secondary metabolites, among them the potent hepatotoxin nodularin, the linear spumigin and the cyclic nodulapeptin. The transcriptional complexity associated with genes involved in nitrogen fixation and heterocyst differentiation is considerably smaller compared to other Nostocales. In contrast, sophisticated systems exist for the uptake and assimilation of iron and phosphorus compounds, for the synthesis of compatible solutes, and for the formation of gas vesicles, required for the active control of buoyancy. Hence, the annotation and interpretation of this sequence provides a vast array of clues into the genomic underpinnings of the physiology of this cyanobacterium and indicates in particular a competitive edge of N. spumigena in nutrient-limited brackish water ecosystems.
  •  
3.
  • Warshan, Denis, 1988- (författare)
  • Cyanobacteria in symbiosis with boreal forest feathermosses : from genome evolution and gene regulation to impact on the ecosystem
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Among dinitrogen (N2)-fixing some cyanobacteria can establish symbiosis with a broad range of host plants from all plant lineages including bryophytes, ferns, gymnosperms, and angiosperms. In the boreal forests, the symbiosis between epiphytic cyanobacteria and feathermosses Hylocomium splendens and Pleurozium schreberi is ecologically important. The main input of biological N to the boreal forests is through these cyanobacteria, and thus, they greatly contribute to the productivity of this ecosystem. Despite the ecological relevance of the feathermoss symbiosis, our knowledge about the establishment and maintenance of cyanobacterial-plant partnerships in general is limited, and particularly our understanding of the feathermoss symbiosis is rudimentary.The first aim of this thesis was to gain insight on the genomic rearrangements that enabled cyanobacteria to form a symbiosis with feathermosses, and their genomic diversity and similarities with other plant-symbiotic cyanobacteria partnerships. Genomic comparison of the feathermoss isolates with the genomes of free-living cyanobacteria highlighted that functions such as chemotaxis and motility, the transport and metabolism of organic sulfur, and the uptake of phosphate and amino acids were enriched in the genome of plant-symbiotic cyanobacteria.The second aim of this PhD study was to identify cyanobacterial molecular pathways involved in forming the feathermoss symbiosis and the regulatory rewiring needed to maintain it. Global transcriptional and post-transcriptional regulation in cyanobacteria during the early phase of establishment of the feathermoss symbiosis, and after colonization of the moss were investigated. The results revealed that the putative symbiotic gene repertoire includes pathways never before associated with cyanobacteria-plant symbioses, such as nitric-oxide sensing and regulation, and the transport and metabolism of aliphatic sulfonate.The third aim was to explore the role of the cyanobacterial community in contributing to the temporal variability of N2-fixation activity. Results from a field-study showed that temporal variation in N2-fixation rates could be explained to a high degree by changes in cyanobacterial community composition and activity. In particular, the cyanobacteria belonging to the genus Stigonema - although not dominating the community- appeared to be the main contributors to the N2-fixation activities. Based on this result, it is suggested that this genus is responsible for the main input of N in the boreal forest ecosystems.The last aim was to understand how the relationship between cyanobacterial community composition and N2-fixation activity will be affected by climatic changes such as, increased temperature (11oC compared to 19oC) and CO2 level (500 ppm compared to 1000 ppm). Laboratory experiments highlighted that 30 weeks of combined elevation of temperature and CO2 resulted in increased N2-fixation activity and moss growth rates. The observed increases were suggested to be allocated to reduced cyanobacterial diversity and changes in community composition, resulting in the dominance of cyanobacteria adapted to the future abiotic condition.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy