SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Djamour Y.) "

Sökning: WFRF:(Djamour Y.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mousavi, Z., et al. (författare)
  • Global Positioning System constraints on the active tectonics of NE Iran and the South Caspian region
  • 2013
  • Ingår i: Earth and Planetary Science Letters. - : Elsevier. - 0012-821X .- 1385-013X. ; 377-378, s. 287-298
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a velocity field compiled from a network of 27 permanent and 20 campaign GPS stations  across NE Iran. This new GPS velocity field helps to investigate how Arabia-Eurasia collision deformation is accommodated at the northern boundary of the deforming zone. The present-day northward motion decreases eastward from 11 mm/yr at Tehran (~52°E) to 1.5 mm/yr at Mashhad  (~60°E). N-S shortening across the Kopeh Dagh, Binalud and Kuh-e-Surkh ranges sums to 4.5±0.5 mm/yr at longitude 59°E. The available GPS velocities allow us to describe the rigid-body rotation of the South Caspian about an Euler pole that is located further away than previously thought. We suggest that two new stations (MAVT and MAR2), which are sited far from the block boundaries, are most  likely to indicate the full motion of the South Caspian basin. These stations suggest that NW motion is accommodated by right-lateral slip on the Ashkabad fault (at a rate of up to 7 mm/yr) and by up to 4-6 mm/yr of summed left-lateral slip across the Shahroud left-lateral strike-slip system. Our new GPS results are important for assessing seismic hazard in NE Iran, which contains numerous large population centers and possesses an abundant historical earthquake record. Our results suggest that the fault zones along the eastern Alborz and western Kopeh Dagh may accommodate slip at much faster rates than previously thought. Fully assessing the role of these faults, and the hazard that they represent, requires independent verification of their slip-rates through additional GPS measurements and geological fieldwork.
  •  
2.
  • Tavakoli, F., et al. (författare)
  • Distribution of the right-lateral strike-slip motion from the Main Recent Fault to the Kazerun Fault System (Zagros, Iran): Evidence from present-day GPS velocities
  • 2008
  • Ingår i: Earth and Planetary Science Letters. - : Elsevier BV. - 0012-821X .- 1385-013X. ; 275, s. 342-375
  • Tidskriftsartikel (refereegranskat)abstract
    • GPS measurements across the Kazerun Fault System in the Zagros mountain belt provide first instantaneous velocities on the different segments. These results are closely consistent with the geological fault slip rates (over 150 ka), implying stable velocities over a longer period. The present-day strike–slip motion is distributed from the Main Recent Fault to the N-trending Kazerun Fault System along a preferential en-echelon fault zone included in a more distributed fan-shape fault pattern. The Hormuz salt decoupling layer cannot be the only cause of a sedimentary spreading because seismicity attests these faults are rooted in the basement. The Dena fault (3.7 mm/yr) transfers the MRF fault slip mainly to the Kazerun (3.6 mm/yr) and slightly to the High Zagros and Sabz Pushan faults (1.5 mm/yr), and the Kazerun fault further to the Kareh Bas fault (3.4 mm/yr). Total geological horizontal offsets associated with GPS slip rates help inferring precise fault slip onset ages. The successive onsets deduced by this approach imply that the right-lateral strike-slip activity of the MRF has propagated in time southeastward to the Dena segment, and then to the Kazerun segment and to the Kareh Bas fault.
  •  
3.
  • Vernant, P, et al. (författare)
  • Deciphering oblique shortening of central Alborz in Iran using geodetic data
  • 2004
  • Ingår i: Earth and Planetary Science Letters. - : Elsevier. - 0012-821X. ; 223:1-2, s. 177-185
  • Tidskriftsartikel (refereegranskat)abstract
    • The Alborz is a narrow (100 km) and elevated (3000 m) mountain belt which accommodates the differential motion between the Sanandaj–Sirjan zone in central Iran and the South Caspian basin. GPS measurements of 12 geodetic sites in Central Alborz between 2000 and 2002 allow to constrain the motion of the belt with respect to western Eurasia. One site velocity on the Caspian shoreline suggests that the South Caspian basin moves northwest at a rate of 6±2 mm/year with respect to western Eurasia. North–South shortening across the Alborz occurs at 5±2 mm/year. To the South, deformation seems to extend beyond the piedmont area, probably due to active thrusting on the Pishva fault. We also observe a left-lateral shear of the overall belt at a rate of 4±2 mm/year, consistent with the geological motion observed along E–W active strike-slip faults inside the belt (e.g., the Mosha fault).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy