SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dobosz P) "

Sökning: WFRF:(Dobosz P)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kanai, M, et al. (författare)
  • 2023
  • swepub:Mat__t
  •  
2.
  •  
3.
  • Audet, T. L., et al. (författare)
  • Electron injector for compact staged high energy accelerator
  • 2016
  • Ingår i: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. - : Elsevier BV. - 0168-9002. ; 829, s. 304-308
  • Tidskriftsartikel (refereegranskat)abstract
    • An electron injector for multi-stage laser wakefield experiments is presented. It consists of a variable length gas cell of small longitudinal dimension (⩽10mm). The gas filling process in this cell was characterized both experimentally and with fluid simulation. Electron acceleration experiments were performed at two different laser facilities. Results show low divergence and low pointing fluctuation electron bunches suitable for transport to a second stage, and a peaked energy distribution suitable for injection into the second stage wakefield accelerator.
  •  
4.
  • Audet, T. L., et al. (författare)
  • Investigation of ionization-induced electron injection in a wakefield driven by laser inside a gas cell
  • 2016
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 23:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Ionization-induced electron injection was investigated experimentally by focusing a driving laser pulse with a maximum normalized potential of 1.2 at different positions along the plasma density profile inside a gas cell, filled with a gas mixture composed of 99%H2+1%N2. Changing the laser focus position relative to the gas cell entrance controls the accelerated electron bunch properties, such as the spectrum width, maximum energy, and accelerated charge. Simulations performed using the 3D particle-in-cell code WARP with a realistic density profile give results that are in good agreement with the experimental ones. The interest of this regime for optimizing the bunch charge in a selected energy window is discussed.
  •  
5.
  • Ballantyne, Kaye N., et al. (författare)
  • Toward Male Individualization with Rapidly Mutating Y-Chromosomal Short Tandem Repeats
  • 2014
  • Ingår i: Human Mutation. - : John Wiley & Sons. - 1059-7794 .- 1098-1004. ; 35:8, s. 1021-1032
  • Tidskriftsartikel (refereegranskat)abstract
    • Relevant for various areas of human genetics, Y-chromosomal short tandem repeats (Y-STRs) are commonly used for testing close paternal relationships among individuals and populations, and for male lineage identification. However, even the widely used 17-loci Yfiler set cannot resolve individuals and populations completely. Here, 52 centers generated quality-controlled data of 13 rapidly mutating (RM) Y-STRs in 14,644 related and unrelated males from 111 worldwide populations. Strikingly, greater than99% of the 12,272 unrelated males were completely individualized. Haplotype diversity was extremely high (global: 0.9999985, regional: 0.99836-0.9999988). Haplotype sharing between populations was almost absent except for six (0.05%) of the 12,156 haplotypes. Haplotype sharing within populations was generally rare (0.8% nonunique haplotypes), significantly lower in urban (0.9%) than rural (2.1%) and highest in endogamous groups (14.3%). Analysis of molecular variance revealed 99.98% of variation within populations, 0.018% among populations within groups, and 0.002% among groups. Of the 2,372 newly and 156 previously typed male relative pairs, 29% were differentiated including 27% of the 2,378 father-son pairs. Relative to Yfiler, haplotype diversity was increased in 86% of the populations tested and overall male relative differentiation was raised by 23.5%. Our study demonstrates the value of RMY-STRs in identifying and separating unrelated and related males and provides a reference database.
  •  
6.
  •  
7.
  • Desforges, F. G., et al. (författare)
  • Analysis of Electron Injection in Laser Wakefield Acceleration Using Betatron Emission in Capillary Tubes
  • 2015
  • Ingår i: Laser Acceleration of Electrons, Protons, and Ions III; and Medical Applications of Laser-Generated Beams of Particles III. - : SPIE. - 1996-756X .- 0277-786X. ; 9514, s. 95140-95140
  • Konferensbidrag (refereegranskat)abstract
    • The dynamics of ionization-induced electron injection in the high density (similar to 1.2 x 10(19)cm(-3)) regime of Laser Wakefield Acceleration (LWFA) was investigated by analyzing betatron X-ray emission inside dielectric capillary tubes. A comparative study of the electron and betatron X-ray properties was performed for both self-injection and ionization-induced injection. Direct experimental evidence of early onset of ionization-induced injection into the plasma wave was obtained by mapping the X-ray emission zone inside the plasma. Particle-In-Cell (PIC) simulations showed that the early onset of ionization-induced injection, due to its lower trapping threshold, suppresses self-injection of electrons. An increase of X-ray fluence by at least a factor of two was observed in the case of ionization-induced injection due to an increased trapped charge compared to self-injection mechanism.
  •  
8.
  • Dickson, L. T., et al. (författare)
  • Mechanisms to control laser-plasma coupling in laser wakefield electron acceleration
  • 2022
  • Ingår i: Physical Review Accelerators and Beams. - 2469-9888. ; 25:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Experimental results, supported by precise modeling, demonstrate optimization of a plasma-based injector with intermediate laser pulse energy (<1 J), corresponding to a normalized vector potential a0=2.15, using ionization injection in a tailored plasma density profile. An increase in electron bunch quality and energy is achieved experimentally with the extension of the density downramp at the plasma exit. Optimization of the focal position of the laser pulse in the tailored plasma density profile is shown to efficiently reduce electron bunch angular deviation, leading to a better alignment of the electron bunch with the laser axis. Single peak electron spectra are produced in a previously unexplored regime by combining an early focal position and adaptive optic control of the laser wavefront by optimizing the symmetry of the prefocal laser energy distribution. Experimental results have been validated through particle-in-cell simulations using realistic laser energy, phase distribution, and temporal envelope, allowing for accurate predictions of difficult to model parameters, such as total charge and spatial properties of the electron bunches, opening the way for more accurate modeling for the design of plasma-based accelerators.
  •  
9.
  • Desforges, F. G., et al. (författare)
  • Dynamics of ionization-induced electron injection in the high density regime of laser wakefield acceleration
  • 2014
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 21:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The dynamics of ionization-induced electron injection in high density (similar to 1.2 x 10(19) cm(-3)) regime of laser wakefield acceleration is investigated by analyzing the betatron X-ray emission. In such high density operation, the laser normalized vector potential exceeds the injection-thresholds of both ionization-injection and self-injection due to self-focusing. In this regime, direct experimental evidence of early on-set of ionization-induced injection into the plasma wave is given by mapping the X-ray emission zone inside the plasma. Particle-In-Cell simulations show that this early on-set of ionization-induced injection, due to its lower trapping threshold, suppresses the trapping of self-injected electrons. A comparative study of the electron and X-ray properties is performed for both self-injection and ionization-induced injection. An increase of X-ray fluence by at least a factor of two is observed in the case of ionization-induced injection due to increased trapped charge compared to self-injection mechanism. (C) 2014 AIP Publishing LLC.
  •  
10.
  • Filippi, F., et al. (författare)
  • Plasma density profile reconstruction of a gas cell for Ionization Induced Laser Wakefield Acceleration
  • 2023
  • Ingår i: Journal of Instrumentation. - 1748-0221. ; 18:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Laser-driven plasma wakefields can provide hundreds of MeV electron beam in mm-range distances potentially shrinking the dimension of the actual particle accelerators. The plasma density plays a fundamental role in the control and stability of the acceleration process, which is a key development for the future electron injector proposed by EuPRAXIA. A gas cell was designed by LPGP and LIDYL teams, with variable length and backing pressure, to confine the gas and tailor the gas density profile before the arrival of the laser. This cell was used during an experimental campaign with the multi TW-class laser at the Lund Laser Centre. Ionization assisted injection in a tailored density profile is used to tune the electron beam properties. During the experiment, we filled the gas cell with hydrogen mixed with different concentration of nitrogen. We also varied the backing pressure of the gas and the geometrical length of the gas cell. We used a transverse probe to acquire shadowgraphic images of the plasma and to measure the plasma electron density. Methods and results of the analysis with comparisons between shadowgraphic and interferometric images will be discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy