SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dobrota Ana S.) "

Sökning: WFRF:(Dobrota Ana S.)

  • Resultat 1-10 av 28
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ritopecki, Milica S. S., et al. (författare)
  • The Local Coordination Effects on the Reactivity and Speciation of Active Sites in Graphene-Embedded Single-Atom Catalysts over Wide pH and Potential Range
  • 2022
  • Ingår i: Nanomaterials. - : MDPI AG. - 2079-4991. ; 12:23
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the catalytic performance of different materials is of crucial importance for achieving further technological advancements. This especially relates to the behaviors of different classes of catalysts under operating conditions. Here, we analyzed the effects of local coordination of metal centers (Mn, Fe, Co) in graphene-embedded single-atom catalysts (SACs). We started with well-known M@N-4-graphene catalysts and systematically replaced nitrogen atoms with oxygen or sulfur atoms to obtain M@OxNy-graphene and M@SxNy-graphene SACs (x + y = 4). We show that local coordination strongly affects the electronic structure and reactivity towards hydrogen and oxygen species. However, stability is even more affected. Using the concept of Pourbaix plots, we show that the replacement of nitrogen atoms in metal coordinating centers with O or S destabilized the SACs towards dissolution, while the metal centers were easily covered by O and OH, acting as additional ligands at high anodic potentials and high pH values. Thus, not only should local coordination be considered in terms of the activity of SACs, but it is also necessary to consider its effects on the speciation of SAC active centers under different potentials and pH conditions.
  •  
2.
  • Dobrota, Ana S., et al. (författare)
  • Stabilization of alkali metal ions interaction with OH-functionalized graphene via clustering of OH groups - implications in charge storage applications
  • 2016
  • Ingår i: RSC Advances. - : Royal Society of Chemistry (RSC). - 2046-2069. ; 6:63, s. 57910-57919
  • Tidskriftsartikel (refereegranskat)abstract
    • Graphene synthesized by reduction of graphene oxide, depending on the degree of reduction, retains a certain amount of surface OH groups. Considering the surface OH groups/graphene layer system by means of density functional theory calculations, we evidenced the tendency of OH groups to cluster, resulting in enhanced system stability and no band gap opening. In the oxygen concentration range between 1.8 and 8.47 at%, with the addition of each new OH group, integral binding energy decreases, while differential binding energy shows the boost at even numbers of OH groups. Furthermore, we found that the clustering of OH groups over graphene basal plane plays a crucial role in enhancing the interactions with alkali metals. Namely, if alkali metal atoms interact with individual OH groups only, the interaction leads to an irreversible formation of MOH phase. When alkali atoms interact with clusters containing odd number of OH groups, a reversible transfer of an electron charge from the metal atom to the substrate takes place without OH removal. The strength of the interaction in general increases from Li to K. In an experimental investigation of a graphene sample which dominantly contains OH groups, we have shown that the trend in the specific interaction strength reflects to gravimetric capacitances measured in alkali metal chloride solutions. We propose that the charge stored in OH groups which interact with alkali metal cation and the pi electronic system of the graphene basal plane presents the main part of its pseudocapacitance.
  •  
3.
  • Ritopečki, Milica S., et al. (författare)
  • Density Functional Theory Analysis of the Impact of Boron Concentration and Surface Oxidation in Boron-Doped Graphene for Sodium and Aluminum Storage
  • 2023
  • Ingår i: C - Journal of Carbon Research. - : MDPI. - 2311-5629. ; 9:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Graphene is thought to be a promising material for many applications. However, pristine graphene is not suitable for most electrochemical devices, where defect engineering is crucial for its performance. We demonstrate how the boron doping of graphene can alter its reactivity, electrical conductivity and potential application for sodium and aluminum storage, with an emphasis on novel metal-ion batteries. Using Density Functional Theory calculations, we investigate both the influence of boron concentration and the oxidation of the material on the mentioned properties. It is demonstrated that the presence of boron in graphene increases its reactivity towards atomic hydrogen and oxygen-containing species; in other words, it makes B-doped graphene more prone to oxidation. Additionally, the presence of these surface functional groups significantly alters the type and strength of the interaction of Na and Al with the given materials. Boron-doping and the oxidation of graphene is found to increase the Na storage capacity of graphene by a factor of up to four, and the calculated sodiation potentials indicate the possibility of using these materials as electrode materials in high-voltage Na-ion batteries.
  •  
4.
  • Cha, Gihoon, et al. (författare)
  • As a single atom Pd outperforms Pt as the most active co-catalyst for photocatalytic H-2 evolution
  • 2021
  • Ingår i: ISCIENCE. - : Elsevier BV. - 2589-0042. ; 24:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Here, we evaluate three different noble metal co-catalysts (Pd, Pt, and Au) that are present as single atoms (SAs) on the classic benchmark photocatalyst, TiO2. To trap the single atoms on the surface, we introduced controlled surface vacancies (Ti3+-Ov) on anatase TiO2 nanosheets by a thermal reduction treatment. After anchoring identical loadings of single atoms of Pd, Pt, and Au, we measure the photocatalytic H-2 generation rate and compare it to the classic nanoparticle co-catalysts on the nanosheets. While nanoparticles yield the well-established the hydrogen evolution reaction activity sequence (Pt > Pd > Au), for the single atom form, Pd radically outperforms Pt and Au. Based on density functional theory (DFT), we ascribe this unusual photocatalytic co-catalyst sequence to the nature of the charge localization on the noble metal SAs embedded in the TiO2 surface.
  •  
5.
  • Chanda, Debabrata, et al. (författare)
  • Investigation of electrocatalytic activity on a N-doped reduced graphene oxide surface for the oxygen reduction reaction in an alkaline medium
  • 2018
  • Ingår i: International journal of hydrogen energy. - : PERGAMON-ELSEVIER SCIENCE LTD. - 0360-3199 .- 1879-3487. ; 43:27, s. 12129-12139
  • Tidskriftsartikel (refereegranskat)abstract
    • Today the search for new energy resources is a crucial topic for materials science. The development of new effective catalysts for the oxygen reduction reaction can significantly improve the performance of fuel cells as well as electrocatalytic hydrogen production. This study presents the scalable synthesis of nitrogen-doped graphene oxide for the oxygen reduction reaction. The combination of an ab initio theoretical investigation of the oxygen reduction reaction (ORR) mechanism and detailed electrochemical characterization allowed the identification of electrocatalytically active nitrogen functionalities. The dominant effect on electrocatalytic activity is the presence of graphitic and pyridinic nitrogen and also N-oxide functionalities. The overpotential of ORR for nitrogen-doped graphene oxide prepared by microwave-assisted synthesis outperformed the metal-doped graphene materials. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
  •  
6.
  • Diklic, Natasa P., et al. (författare)
  • Sodium storage via single epoxy group on graphene - The role of surface doping
  • 2019
  • Ingår i: Electrochimica Acta. - : Elsevier. - 0013-4686 .- 1873-3859. ; 297, s. 523-528
  • Tidskriftsartikel (refereegranskat)abstract
    • Due to its unique physical and chemical properties, graphene is being considered as a promising material for energy conversion and storage applications. Introduction of functional groups and dopants on/in graphene is a useful strategy for tuning its properties. In order to fully exploit its potential, atomic-level understanding of its interaction with species of importance for such applications is required. We present a DFT study of the interaction of sodium atoms with epoxy-graphene and analyze how this interaction is affected upon doping with boron and nitrogen. We demonstrate how the dopants, combined with oxygen-containing groups alter the reactivity of graphene towards Na. Dopants act as attractors of epoxy groups, enhancing the sodium adsorption on doped oxygen-functionalized graphene when compared to the case of non-doped epoxy-graphene. Furthermore, by considering thermodynamics of the Na interaction with doped epoxy-graphene it has been concluded that such materials are good candidates for Na storage applications. Therefore, we suggest that controlled oxidation of doped carbon materials could lead to the development of advanced anode materials for rechargeable Na-ion batteries.
  •  
7.
  • Dobrota, Ana S., et al. (författare)
  • A DFT study of the interplay between dopants and oxygen functional groups over the graphene basal plane - implications in energy-related applications
  • 2017
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : ROYAL SOC CHEMISTRY. - 1463-9076 .- 1463-9084. ; 19:12, s. 8530-8540
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the ways graphene can be functionalized is of great importance for many contemporary technologies. Using density functional theory calculations we investigate how vacancy formation and substitutional doping by B, N, P and S affect the oxidizability and reactivity of the graphene basal plane. We find that the presence of these defects enhances the reactivity of graphene. In particular, these sites act as strong attractors for OH groups, suggesting that the oxidation of graphene could start at these sites or that these sites are the most difficult to reduce. Scaling between the OH and H adsorption energies is found on both reduced and oxidized doped graphene surfaces. Using the O-2 molecule as a probe we show that a proper modelling of doped graphene materials has to take into account the presence of oxygen functional groups.
  •  
8.
  • Dobrota, Ana S., et al. (författare)
  • A general view on the reactivity of the oxygen-functionalized graphene basal plane
  • 2016
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry. - 1463-9076 .- 1463-9084. ; 18:9, s. 6580-6586
  • Tidskriftsartikel (refereegranskat)abstract
    • In this contribution we inspect the adsorption of H, OH, Cl and Pt on oxidized graphene using DFT calculations. The introduction of epoxy and hydroxyl groups on the graphene basal plane significantly alters its chemisorption properties, which can be attributed to the deformation of the basal plane and the type and distribution of these groups. We show that a general scaling relation exists between the hydrogen binding energies and the binding energies of other investigated adsorbates, which allows for a simple probing of the reactivity of oxidized graphene with only one adsorbate. The electronic states of carbon atoms located within the 2 eV interval below the Fermi level are found to be responsible for the interaction of the basal plane with the chosen adsorbates. The number of electronic states situated in this energy interval is shown to correlate with hydrogen binding energies.
  •  
9.
  • Dobrota, Ana S., et al. (författare)
  • Altering the reactivity of pristine, N- and P-doped graphene by strain engineering : A DFT view on energy related aspects
  • 2020
  • Ingår i: Applied Surface Science. - : ELSEVIER. - 0169-4332 .- 1873-5584. ; 514
  • Tidskriftsartikel (refereegranskat)abstract
    • For carbon-based materials, in contrast to metal surfaces, a general relationship between strain and reactivity is not yet established, even though there are literature reports on strained graphene. Knowledge of such relationships would be extremely beneficial for understanding the reactivity of graphene-based surfaces and finding optimisation strategies which would make these materials more suitable for targeted applications. Here we investigate the effects of compressive and tensile strain (up to +/- 5%) on the structure, electronic properties and reactivity of pure, N-doped and P-doped graphene, using DFT calculations. We demonstrate the possibility of tuning the topology of the graphene surface by strain, as well as by the choice of the dopant atom. The reactivity of (doped) strained graphene is probed using H and Na as simple adsorbates of great practical importance. Strain can both enhance and weaken H and Na adsorption on (doped) graphene. In case of Na adsorption, a linear relationship is observed between the Na adsorption energy on P-doped graphene and the phosphorus charge. A linear relationship between the Na adsorption energy on flat graphene surfaces and strain is found. Based on the adsorption energies and electrical conductivity, potentially good candidates for hydrogen storage and sodiumion battery electrodes are discussed.
  •  
10.
  • Dobrota, Ana S., et al. (författare)
  • First-principles analysis of aluminium interaction with nitrogen-doped graphene nanoribbons : From adatom bonding to various
  • 2022
  • Ingår i: Materials Today Communications. - : Elsevier BV. - 2352-4928. ; 31
  • Tidskriftsartikel (refereegranskat)abstract
    • Enhancing aluminium interaction with graphene-based materials is of crucial importance for the development of Al-storage materials and novel functional materials via atomically precise doping. Here, DFT calculations are employed to investigate Al interactions with non-doped and N-doped graphene nanoribbons (GNRs) and address the impact of the edge sites and N-containing defects on the material's reactivity towards Al. The presence of edges does not influence the energetics of Al adsorption significantly (compared to pristine graphene sheet). On the other hand, N-doping of graphene nanoribbons is found to affect the adsorption energy of Al to an extent that strongly depends on the type of N-containing defect. The introduction of edge-NO group and doping with in -plane pyridinic N result in Al adsorption nearly twice as strong as on pristine graphene. Moreover, double n-type doping via N and Al significantly alters the electronic structure of Al,N-containing GNRs. Our results suggest that selectively doped GNRs with pyridinic N can have enhanced Al-storage capacity and could be potentially used for selective Al electrosorption and removal. On the other hand, Al,N-containing GNRs with pyridinic N could also be used in resistive sensors for mechanical deformation. Namely, strain along the longitudinal axis of these dual doped GNRs does not affect the binding of Al but tunes the bandgap and causes more than 700-fold change in the conductivity. Thus, careful defect engineering and selective doping of GNRs with N (and Al) could lead to novel multifunctional materials with exceptional properties. [GRAPHICS]
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 28

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy