SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dobrovolskiy V.) "

Sökning: WFRF:(Dobrovolskiy V.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chumak, A. V., et al. (författare)
  • Advances in Magnetics Roadmap on Spin-Wave Computing
  • 2022
  • Ingår i: IEEE Transactions on Magnetics. - 0018-9464. ; 58:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnonics addresses the physical properties of spin waves and utilizes them for data processing. Scalability down to atomic dimensions, operation in the GHz-to-THz frequency range, utilization of nonlinear and nonreciprocal phenomena, and compatibility with CMOS are just a few of many advantages offered by magnons. Although magnonics is still primarily positioned in the academic domain, the scientific and technological challenges of the field are being extensively investigated, and many proof-of-concept prototypes have already been realized in laboratories. This roadmap is a product of the collective work of many authors that covers versatile spin-wave computing approaches, conceptual building blocks, and underlying physical phenomena. In particular, the roadmap discusses the computation operations with Boolean digital data, unconventional approaches like neuromorphic computing, and the progress towards magnon-based quantum computing. The article is organized as a collection of sub-sections grouped into seven large thematic sections. Each sub-section is prepared by one or a group of authors and concludes with a brief description of current challenges and the outlook of further development for each research direction. Author
  •  
2.
  • Volkov, Oleksii M., et al. (författare)
  • Three-dimensional magnetic nanotextures with high-order vorticity in soft magnetic wireframes
  • 2024
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Additive nanotechnology enable curvilinear and three-dimensional (3D) magnetic architectures with tunable topology and functionalities surpassing their planar counterparts. Here, we experimentally reveal that 3D soft magnetic wireframe structures resemble compact manifolds and accommodate magnetic textures of high order vorticity determined by the Euler characteristic, χ. We demonstrate that self-standing magnetic tetrapods (homeomorphic to a sphere; χ = + 2) support six surface topological solitons, namely four vortices and two antivortices, with a total vorticity of + 2 equal to its Euler characteristic. Alternatively, wireframe structures with one loop (homeomorphic to a torus; χ = 0) possess equal number of vortices and antivortices, which is relevant for spin-wave splitters and 3D magnonics. Subsequent introduction of n holes into the wireframe geometry (homeomorphic to an n-torus; χ < 0) enables the accommodation of a virtually unlimited number of antivortices, which suggests their usefulness for non-conventional (e.g., reservoir) computation. Furthermore, complex stray-field topologies around these objects are of interest for superconducting electronics, particle trapping and biomedical applications.
  •  
3.
  • Wang, J., et al. (författare)
  • Final report of the CCQM-K145 : Toxic and essential elements in bovine liver
  • 2020
  • Ingår i: Metrologia. - : IOP Publishing Ltd. - 0026-1394 .- 1681-7575. ; 57:1 A
  • Tidskriftsartikel (refereegranskat)abstract
    • Liver plays a major role in metabolism and acts as a source of energy for the body by storing glycogen. With the growing interest and investigation in the biological effects in recent years, it is important and necessary to develop accurate and comparable analytical methods for elements in bio-samples. It has, however, been 10 years since the tissue sample (bovine liver) of CCQM-K49 key comparison. The purpose of CCQM-K145 is to ensure the comparable and traceable measurement results for essential and toxic elements such as P, S, Zn, Mn, Ni, Mo, Sr, Cr, Co, Pb, As and Hg in bovine liver among NMIs and other designated measurement bodies worldwide. The comparison was agreed by IAWG as 6th IAWG Benchmarking Exercise with Zn and Ni as exemplary elements at the meeting in Korea in the early October 2016. The results of CCQM-K145 are expected to cover the measurement capability and support CMCs claiming for inorganic elements in the similar biological tissue materials and food samples. 30 NMIs and DIs registered in CCQM-K145. With respect to the methodology, a variety of techniques such as IDMS, ICP-OES, ICP-MS(non-ID), AAS and NAA were adopted by the participants. For Zn, Ni, Sr, Pb and Hg measurements, most participants chose ID-ICP-MS method, which showed the better performance in terms of consistency and reliability of the measurement results. In aspect of the traceability for the measurement results in CCQM-K145, most participants used their own (in house) CRMs or other NMI's CRMs to guarantee trace to SI unit. Most participants used similar matrix CRMs for quality control or method validation. Base on different statistic way to calculate the reference mass fraction values and associated uncertainties for each measurand, removal of the suspected extreme values, and discussion at the IAWG meetings, the median values are proposed as the KCRV for Zn, Ni, Mn, Mo, Cr, Pb and Hg; the arithmetic mean values are proposed as the KCRV for P, S, Sr, Co and As. In general, the performances of the majority of CCQM-K145 participants are very good, illustrating their measurement capabilities for Zn, Ni, P, S, Mn, Mo, Sr, Cr, As, Co, Pb and Hg in a complex biological tissue matrix. Bovine liver contains many kinds of nutrients and microelements, it can be regarded as a typical representative material of biological tissue and food. In CCQM-K145, the analytes involved alkali metals and transition elements, metalloids/semi-metals and non metals with a range of mass fraction from mg/g to μg/kg. CCQM-K145 also tested the ability of NMIs/DIs to determine elements that were easy to be lost and polluted, and interfered significantly. The chemical pretreatment methods of samples used in the comparison is suitable for general food and biological matrix samples. A variety of measurement methods used in the comparison represent the main instrumental technology for elemental analysis. Therefore, for supporting CMC claim, CCQM-K145 is readily applicable to measurement of more elements in a wide range of biological materials (including liquids and solids) and meat products. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
  •  
4.
  • Zwiller, Val, et al. (författare)
  • Single-photon detection with near unity efficiency, ultrahigh detection-rates, and ultra-high time resolution
  • 2017
  • Ingår i: CLEO: Science and Innovations part of CLEO: 2017 : 4-19 May 2017, San Jose, California, United States. - : Optical Society of America. - 9781943580279
  • Konferensbidrag (refereegranskat)abstract
    • Single-photon detectors with high efficiency, high time resolution, low dark counts and high photon detection-rates are vital for most demanding quantum optics experiments. Combining all performances in a single device has been challenging. Here, we demonstrate a broadband detector with efficiency higher than 92%, over 150 MHz photon detection-rate and dark counts below 130 Hz operated in a conventional Gifford-McMahon cryostat. Furthermore, using our custom made cryogenic amplifiers and optimized detector, we reach a record low jitter of 14.80 ps while maintaining high efficiency.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy