SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dockter Christoph) "

Sökning: WFRF:(Dockter Christoph)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Betts, Natalie S., et al. (författare)
  • Identification and spatio-temporal expression analysis of barley genes that encode putative modular xylanolytic enzymes
  • 2021
  • Ingår i: Plant Science. - : Elsevier BV. - 0168-9452 .- 1873-2259. ; 308
  • Tidskriftsartikel (refereegranskat)abstract
    • Arabinoxylans are cell wall polysaccharides whose re-modelling and degradation during plant development are mediated by several classes of xylanolytic enzymes. Here, we present the identification and new annotation of twelve putative (1,4)-13-xylanase and six 13-xylosidase genes, and their spatio-temporal expression patterns during vegetative and reproductive growth of barley (Hordeum vulgare cv. Navigator). The encoded xylanase proteins are all predicted to contain a conserved carbohydrate-binding module (CBM) and a catalytic glycoside hydrolase (GH) 10 domain. Additional domains in some xylanases define three discrete phylogenetic clades: one clade contains proteins with an additional N-terminal signal sequence, while another clade contains proteins with multiple CBMs. Homology modelling revealed that all fifteen xylanases likely contain a third domain, a 13-sandwich folded from two non-contiguous sequence segments that bracket the catalytic GH domain, which may explain why the full length protein is required for correct folding of the active enzyme. Similarly, predicted xylosidase proteins share a highly conserved domain structure, each with an N-terminal signal peptide, a split GH 3 domain, and a C-terminal fibronectin-like domain. Several genes appear to be ubiquitously expressed during barley growth and development, while four newly annotated xylanase and xylosidase genes are expressed at extremely high levels, which may be of broader interest for industrial applications where cell wall degradation is necessary.
  •  
2.
  • Braumann, Ilka, et al. (författare)
  • Mutations in the gene of the Gα subunit of the heterotrimeric G protein are the cause for brachytic1 semi-dwarf phenotype in barley and applicable for practical breeding
  • 2018
  • Ingår i: Hereditas. - : Springer Science and Business Media LLC. - 1601-5223. ; 155
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Short-culm mutants have been widely used in breeding programs to increase lodging resistance. In barley (Hordeum vulgare L.), several hundreds of short-culm mutants have been isolated over the years. The objective of thepresent study was to identify the Brachytic1 (Brh1) semi-dwarfing gene and to test its effect on yield and malting quality.Results: Double-haploid lines generated through a cross between a brh1.a mutant and the European elite malting cultivar Quench, showed good malting quality but a decrease in yield. Especially the activities of the starch degrading enzymes β-amylase and free limit dextrinase were high. A syntenic approach comparing markers in barley to those in rice (Oryza sativa L.), sorghum (Sorghum bicolor Moench) and brachypodium (Brachypodium distachyon P. Beauv) helped us to identify Brh1 as an orthologue of rice D1 encoding the Gα subunit of a heterotrimeric G protein. We demonstrated that Brh1 is allelic to Ari-m. Sixteen different mutant alleles were described at the DNA level.Conclusions: Mutants in the Brh1 locus are deficient in the Gα subunit of a heterotrimeric G protein, which shows that heterotrimeric G proteins are important regulators of culm length in barley. Mutant alleles do not have any major negative effects on malting quality.
  •  
3.
  • Braumann, Ilka, et al. (författare)
  • Semi-dwarf barley (Hordeum vulgare L.) brh2 and ari-l mutants are deficient in a U-box E3 ubiquitin ligase
  • 2018
  • Ingår i: Plant Growth Regulation. - : Springer Science and Business Media LLC. - 0167-6903 .- 1573-5087. ; 86:2, s. 223-234
  • Tidskriftsartikel (refereegranskat)abstract
    • Lodging is the process where crop plants fall over and lie on the ground due to strong winds and heavy precipitation. This problem reduces yield and increases the risk of fungal infections and pre-harvest germination. In order to avoid lodging, plant breeders utilize short-culm mutants, which often have a robust culm that can support the weight of a heavy spike. In barley (Hordeum vulgare L.), thousands of short-culm mutants have been isolated in breeding programs around the world. Our long-term goal is to reveal the genetic network underlying culm length, with the objective to provide an enlarged repertoire of genes and alleles suitable for future breeding of lodging resistant barley. In the present work we studied a group of allelic brh2 and ari-l mutants, which have a relatively strong semi-dwarf phenotype and are phenotypically similar to previously identified mutants deficient in brassinosteroid signalling or metabolism. The Brh2 gene is located in the centromeric region of chromosome 4H and we applied a candidate gene approach to identify the gene. Brh2 is orthologous to TUD1 in rice (Orysa sativa L.), which encodes a U-box E3 ubiquitin ligase. We identified one missense mutation, one nonsense mutation and four deletions of the complete Brh2 gene. The mutants could respond to exogenously applied brassinolide, which suggests that the apparent brassinosteroid deficient phenotype of barley brh2 and ari-l mutants is related to brassinosteroid metabolism rather than signalling.
  •  
4.
  • Dockter, Christoph, et al. (författare)
  • Improving barley culm robustness for secured crop yield in a changing climate.
  • 2015
  • Ingår i: Journal of Experimental Botany. - : Oxford University Press (OUP). - 0022-0957 .- 1460-2431. ; 66:12, s. 3499-3509
  • Forskningsöversikt (refereegranskat)abstract
    • The Green Revolution combined advancements in breeding and agricultural practice, and provided food security to millions of people. Daily food supply is still a major issue in many parts of the world and is further challenged by future climate change. Fortunately, life science research is currently making huge progress, and the development of future crop plants will be explored. Today, plant breeding typically follows one gene per trait. However, new scientific achievements have revealed that many of these traits depend on different genes and complex interactions of proteins reacting to various external stimuli. These findings open up new possibilities for breeding where variations in several genes can be combined to enhance productivity and quality. In this review we present an overview of genes determining plant architecture in barley, with a special focus on culm length. Many genes are currently known only through their mutant phenotypes, but emerging genomic sequence information will accelerate their identification. More than 1000 different short-culm barley mutants have been isolated and classified in different phenotypic groups according to culm length and additional pleiotropic characters. Some mutants have been connected to deficiencies in biosynthesis and reception of brassinosteroids and gibberellic acids. Still other mutants are unlikely to be connected to these hormones. The genes and corresponding mutations are of potential interest for development of stiff-straw crop plants tolerant to lodging, which occurs in extreme weather conditions with strong winds and heavy precipitation.
  •  
5.
  • Hansson, Mats, et al. (författare)
  • A guide to barley mutants
  • 2024
  • Ingår i: Hereditas. - 0018-0661. ; 161
  • Forskningsöversikt (refereegranskat)abstract
    • Background: Mutants have had a fundamental impact upon scientific and applied genetics. They have paved the way for the molecular and genomic era, and most of today’s crop plants are derived from breeding programs involving mutagenic treatments. Results: Barley (Hordeum vulgare L.) is one of the most widely grown cereals in the world and has a long history as a crop plant. Barley breeding started more than 100 years ago and large breeding programs have collected and generated a wide range of natural and induced mutants, which often were deposited in genebanks around the world. In recent years, an increased interest in genetic diversity has brought many historic mutants into focus because the collections are regarded as valuable resources for understanding the genetic control of barley biology and barley breeding. The increased interest has been fueled also by recent advances in genomic research, which provided new tools and possibilities to analyze and reveal the genetic diversity of mutant collections. Conclusion: Since detailed knowledge about phenotypic characters of the mutants is the key to success of genetic and genomic studies, we here provide a comprehensive description of mostly morphological barley mutants. The review is closely linked to the International Database for Barley Genes and Barley Genetic Stocks (bgs.nordgen.org) where further details and additional images of each mutant described in this review can be found.
  •  
6.
  • Kjær, Kurt H., et al. (författare)
  • A 2-million-year-old ecosystem in Greenland uncovered by environmental DNA
  • 2022
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 612:7939, s. 283-291
  • Tidskriftsartikel (refereegranskat)abstract
    • Late Pliocene and Early Pleistocene epochs 3.6 to 0.8 million years ago1 had climates resembling those forecasted under future warming2. Palaeoclimatic records show strong polar amplification with mean annual temperatures of 11–19 °C above contemporary values3,4. The biological communities inhabiting the Arctic during this time remain poorly known because fossils are rare5. Here we report an ancient environmental DNA6 (eDNA) record describing the rich plant and animal assemblages of the Kap København Formation in North Greenland, dated to around two million years ago. The record shows an open boreal forest ecosystem with mixed vegetation of poplar, birch and thuja trees, as well as a variety of Arctic and boreal shrubs and herbs, many of which had not previously been detected at the site from macrofossil and pollen records. The DNA record confirms the presence of hare and mitochondrial DNA from animals including mastodons, reindeer, rodents and geese, all ancestral to their present-day and late Pleistocene relatives. The presence of marine species including horseshoe crab and green algae support a warmer climate than today. The reconstructed ecosystem has no modern analogue. The survival of such ancient eDNA probably relates to its binding to mineral surfaces. Our findings open new areas of genetic research, demonstrating that it is possible to track the ecology and evolution of biological communities from two million years ago using ancient eDNA.
  •  
7.
  • Lu, Qiongxian, et al. (författare)
  • Analysis of barley mutants ert-c.1 and ert-d.7 reveals two loci with additive effect on plant architecture
  • 2021
  • Ingår i: Planta. - : Springer Science and Business Media LLC. - 0032-0935 .- 1432-2048. ; 254:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Main conclusion: Both mutant ert-c.1 and ert-d.7 carry T2-T3 translocations in the Ert-c gene. Principal coordinate analyses revealed the translocation types and translocation breakpoints. Mutant ert-d.7 is an Ert-cErt-d double mutant. Abstract: Mutations in the Ert-c and Ert-d loci are among the most common barley mutations affecting plant architecture. The mutants have various degrees of erect and compact spikes, often accompanied with short and stiff culms. In the current study, complementation tests, linkage mapping, principal coordinate analyses and fine mapping were conducted. We conclude that the original ert-d.7 mutant does not only carry an ert-d mutation but also an ert-c mutation. Combined, mutations in Ert-c and Ert-d cause a pyramid-dense spike phenotype, whereas mutations in only Ert-c or Ert-d give a pyramid and dense phenotype, respectively. Associations between the Ert-c gene and T2-T3 translocations were detected in both mutant ert-c.1 and ert-d.7. Different genetic association patterns indicate different translocation breakpoints in these two mutants. Principal coordinate analysis based on genetic distance and screening of recombinants from all four ends of polymorphic regions was an efficient way to narrow down the region of interest in translocation-involved populations. The Ert-c gene was mapped to the marker interval of 2_0801to1_0224 on 3HL near the centromere. The results illuminate a complex connection between two single genes having additive effects on barley spike architecture and will facilitate the identification of the Ert-c and Ert-d genes.
  •  
8.
  • Mascher, Martin, et al. (författare)
  • A chromosome conformation capture ordered sequence of the barley genome
  • 2017
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 544:7651, s. 427-433
  • Tidskriftsartikel (refereegranskat)abstract
    • Cereal grasses of the Triticeae tribe have been the major food source in temperate regions since the dawn of agriculture. Their large genomes are characterized by a high content of repetitive elements and large pericentromeric regions that are virtually devoid of meiotic recombination. Here we present a high-quality reference genome assembly for barley (Hordeum vulgare L.). We use chromosome conformation capture mapping to derive the linear order of sequences across the pericentromeric space and to investigate the spatial organization of chromatin in the nucleus at megabase resolution. The composition of genes and repetitive elements differs between distal and proximal regions. Gene family analyses reveal lineage-specific duplications of genes involved in the transport of nutrients to developing seeds and the mobilization of carbohydrates in grains. We demonstrate the importance of the barley reference sequence for breeding by inspecting the genomic partitioning of sequence variation in modern elite germplasm, highlighting regions vulnerable to genetic erosion.
  •  
9.
  • Matyszczak, Izabela, et al. (författare)
  • Analysis of early-flowering genes at barley chromosome 2H expands the repertoire of mutant alleles at the Mat-c locus
  • 2020
  • Ingår i: Plant Cell Reports. - : Springer Science and Business Media LLC. - 0721-7714 .- 1432-203X. ; 39:1, s. 47-61
  • Tidskriftsartikel (refereegranskat)abstract
    • Key message: Analyses of barley mat-c loss of function mutants reveal deletions, splice-site mutations and nonsynonymous substitutions in a key gene regulating early flowering. Abstract: Optimal timing of flowering is critical for reproductive success and crop yield improvement. Several major quantitative trait loci for flowering time variation have been identified in barley. In the present study, we analyzed two near-isogenic lines, BW507 and BW508, which were reported to carry two independent early-flowering mutant loci, mat-b.7 and mat-c.19, respectively. Both introgression segments are co-localized in the pericentromeric region of chromosome 2H. We mapped the mutation in BW507 to a 31 Mbp interval on chromosome 2HL and concluded that BW507 has a deletion of Mat-c, which is an ortholog of Antirrhinum majus CENTRORADIALIS (AmCEN) and Arabidopsis thaliana TERMINAL FLOWER1 (AtTFL1). Contrary to previous reports, our data showed that both BW507 and BW508 are Mat-c deficient and none of them are mat-b.7 derived. This work complements previous studies by identifying the uncharacterized mat-c.19 mutant and seven additional mat-c mutants. Moreover, we explored the X-ray structure of AtTFL1 for prediction of the functional effects of nonsynonymous substitutions caused by mutations in Mat-c.
  •  
10.
  • Patil, Vrushali, et al. (författare)
  • APETALA2 control of barley internode elongation
  • 2019
  • Ingår i: Development (Cambridge). - : The Company of Biologists. - 1477-9129 .- 0950-1991. ; 146:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Many plants dramatically elongate their stems during flowering, yet how this response is coordinated with the reproductive phase is unclear. We demonstrate that microRNA (miRNA) control of APETALA2 (AP2) is required for rapid, complete elongation of stem internodes in barley, especially of the final 'peduncle' internode directly underneath the inflorescence. Disrupted miR172 targeting of AP2 in the Zeo1.b barley mutant caused lower mitotic activity, delayed growth dynamics and premature lignification in the peduncle leading to fewer and shorter cells. Stage- and tissue-specific comparative transcriptomics between Zeo1.b and its parent cultivar showed reduced expression of proliferation-associated genes, ectopic expression of maturation-related genes and persistent, elevated expression of genes associated with jasmonate and stress responses. We further show that applying methyl jasmonate (MeJA) phenocopied the stem elongation of Zeo1.b, and that Zeo1.b itself was hypersensitive to inhibition by MeJA but less responsive to promotion by gibberellin. Taken together, we propose that miR172-mediated restriction of AP2 may modulate the jasmonate pathway to facilitate gibberellin-promoted stem growth during flowering.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy