SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dodsworth S.) "

Sökning: WFRF:(Dodsworth S.)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Dunham, I, et al. (författare)
  • The DNA sequence of human chromosome 22
  • 1999
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 402:6761, s. 489-495
  • Tidskriftsartikel (refereegranskat)
  •  
5.
  • Perez-Escobar, O. A., et al. (författare)
  • Molecular Clocks and Archeogenomics of a Late Period Egyptian Date Palm Leaf Reveal Introgression from Wild Relatives and Add Timestamps on the Domestication
  • 2021
  • Ingår i: Molecular Biology and Evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 38:10, s. 4475-4492
  • Tidskriftsartikel (refereegranskat)abstract
    • The date palm, Phoenix dactylifera, has been a cornerstone of Middle Eastern and North African agriculture for millennia. It was first domesticated in the Persian Gulf, and its evolution appears to have been influenced by gene flow from two wild relatives, P. theophrasti, currently restricted to Crete and Turkey, and P. sylvestris, widespread from Bangladesh to the West Himalayas. Genomes of ancient date palm seeds show that gene flow from P. theophrasti to P. dactylifera may have occurred by similar to 2,200years ago, but traces of P. sylvestris could not be detected. We here integrate archeogenomics of a similar to 2,100-year-old P. dactylifera leaf from Saqqara (Egypt), molecular-clock dating, and coalescence approaches with population genomic tests, to probe the hybridization between the date palm and its two closest relatives and provide minimum and maximum timestamps for its reticulated evolution. The Saqqara date palm shares a close genetic affinity with North African date palm populations, and we find clear genomic admixture from both P. theophrasti, and P. sylvestris, indicating that both had contributed to the date palm genome by 2,100years ago. Molecular-clocks placed the divergence of P. theophrasti from P. dactylifera/P. sylvestris and that of P. dactylifera from P. sylvestris in the Upper Miocene, but strongly supported, conflicting topologies point to older gene flow between P. theophrasti and P. dactylifera, and P. sylvestris and P. dactylifera. Our work highlights the ancient hybrid origin of the date palms, and prompts the investigation of the functional significance of genetic material introgressed from both close relatives, which in turn could prove useful for modern date palm breeding.
  •  
6.
  • Eiserhardt, W. L., et al. (författare)
  • A roadmap for global synthesis of the plant tree of life
  • 2018
  • Ingår i: American Journal of Botany. - : Wiley. - 0002-9122 .- 1537-2197. ; 105:3, s. 614-622
  • Tidskriftsartikel (refereegranskat)abstract
    • Providing science and society with an integrated, up-to-date, high quality, open, reproducible and sustainable plant tree of life would be a huge service that is now coming within reach. However, synthesizing the growing body of DNA sequence data in the public domain and disseminating the trees to a diverse audience are often not straightforward due to numerous informatics barriers. While big synthetic plant phylogenies are being built, they remain static and become quickly outdated as new data are published and tree-building methods improve. Moreover, the body of existing phylogenetic evidence is hard to navigate and access for non-experts. We propose that our community of botanists, tree builders, and informaticians should converge on a modular framework for data integration and phylogenetic analysis, allowing easy collaboration, updating, data sourcing and flexible analyses. With support from major institutions, this pipeline should be re-run at regular intervals, storing trees and their metadata long-term. Providing the trees to a diverse global audience through user-friendly front ends and application development interfaces should also be a priority. Interactive interfaces could be used to solicit user feedback and thus improve data quality and to coordinate the generation of new data. We conclude by outlining a number of steps that we suggest the scientific community should take to achieve global phylogenetic synthesis.
  •  
7.
  • Smith, L. T., et al. (författare)
  • Revised Species Delimitation in the Giant Water Lily Genus Victoria (Nymphaeaceae) Confirms a New Species and Has Implications for Its Conservation
  • 2022
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media SA. - 1664-462X. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Reliably documenting plant diversity is necessary to protect and sustainably benefit from it. At the heart of this documentation lie species concepts and the practical methods used to delimit taxa. Here, we apply a total-evidence, iterative methodology to delimit and document species in the South American genus Victoria (Nymphaeaceae). The systematics of Victoria has thus far been poorly characterized due to difficulty in attributing species identities to biological collections. This research gap stems from an absence of type material and biological collections, also the confused diagnosis of V. cruziana. With the goal of improving systematic knowledge of the genus, we compiled information from historical records, horticulture and geography and assembled a morphological dataset using citizen science and specimens from herbaria and living collections. Finally, we generated genomic data from a subset of these specimens. Morphological and geographical observations suggest four putative species, three of which are supported by nuclear population genomic and plastid phylogenomic inferences. We propose these three confirmed entities as robust species, where two correspond to the currently recognized V. amazonica and V. cruziana, the third being new to science, which we describe, diagnose and name here as V. boliviana Magdalena and L. T. Sm. Importantly, we identify new morphological and molecular characters which serve to distinguish the species and underpin their delimitations. Our study demonstrates how combining different types of character data into a heuristic, total-evidence approach can enhance the reliability with which biological diversity of morphologically challenging groups can be identified, documented and further studied.
  •  
8.
  • Pérez-Escobar, O. A., et al. (författare)
  • Hundreds of nuclear and plastid loci yield novel insights into orchid relationships
  • 2021
  • Ingår i: American Journal of Botany. - : Wiley. - 0002-9122 .- 1537-2197. ; 108:7, s. 1166-1180
  • Tidskriftsartikel (refereegranskat)abstract
    • PREMISE: The inference of evolutionary relationships in the species-rich family Orchidaceae has hitherto relied heavily on plastid DNA sequences and limited taxon sampling. Previous studies have provided a robust plastid phylogenetic framework, which was used to classify orchids and investigate the drivers of orchid diversification. However, the extent to which phylogenetic inference based on the plastid genome is congruent with the nuclear genome has been only poorly assessed. METHODS: We inferred higher-level phylogenetic relationships of orchids based on likelihood and ASTRAL analyses of 294 low-copy nuclear genes sequenced using the Angiosperms353 universal probe set for 75 species (representing 69 genera, 16 tribes, 24 subtribes) and a concatenated analysis of 78 plastid genes for 264 species (117 genera, 18 tribes, 28 subtribes). We compared phylogenetic informativeness and support for the nuclear and plastid phylogenetic hypotheses. RESULTS: Phylogenetic inference using nuclear data sets provides well-supported orchid relationships that are highly congruent between analyses. Comparisons of nuclear gene trees and a plastid supermatrix tree showed that the trees are mostly congruent, but revealed instances of strongly supported phylogenetic incongruence in both shallow and deep time. The phylogenetic informativeness of individual Angiosperms353 genes is in general better than that of most plastid genes. CONCLUSIONS: Our study provides the first robust nuclear phylogenomic framework for Orchidaceae and an assessment of intragenomic nuclear discordance, plastid-nuclear tree incongruence, and phylogenetic informativeness across the family. Our results also demonstrate what has long been known but rarely thoroughly documented: nuclear and plastid phylogenetic trees can contain strongly supported discordances, and this incongruence must be reconciled prior to interpretation in evolutionary studies, such as taxonomy, biogeography, and character evolution. © 2021 The Authors. American Journal of Botany published by Wiley Periodicals LLC on behalf of Botanical Society of America
  •  
9.
  • Pérez-Escobar, Oscar, et al. (författare)
  • Resolving relationships in an exceedingly young Neotropical orchid lineage using Genotyping-by-sequencing data
  • 2020
  • Ingår i: Molecular Phylogenetics and Evolution. - : Elsevier BV. - 1055-7903. ; 144
  • Tidskriftsartikel (refereegranskat)abstract
    • Poor morphological and molecular differentiation in recently diversified lineages is a widespread phenomenon in plants. Phylogenetic relationships within such species complexes are often difficult to resolve because of the low variability in traditional molecular loci. Furthermore, biological phenomena responsible for topological incongruence such as Incomplete Lineage Sorting (ILS) and hybridisation complicate the resolution of phylogenetic relationships among closely related taxa. In this study, we employ a Genotyping-by-sequencing (GBS) approach to disentangle evolutionary relationships within a species complex belonging to the Neotropical orchid genus Cycnoches. This complex includes seven taxa distributed through Central America and the Colombian Choco, and is nested within a Glade estimated to have first diversified in the early Quaternary. Previous phylogenies inferred from few loci failed to provide support for internal relationships within the complex. Our Neighbour-net and coalescent-based analyses inferred from ca. 13,000 GBS loci obtained from 31 individuals belonging to six of the seven traditionally accepted Cycnoches taxa provided a robust phylogeny for this group. The genus Cycnoches includes three main clades that are further supported by morphological traits and geographic distributions. Similarly, a topology reconstructed through maximum likelihood (ML) inference of con-catenated GBS loci produced results that are comparable with those reconstructed through coalescence and network-based methods. Our comparative phylogenetic informativeness analyses suggest that the low support evident in the ML phylogeny might be attributed to the abundance of uninformative GBS loci, which can account for up to 50% of the total number of loci recovered. The phylogenomic framework provided here, as well as morphological evidence and geographical patterns, suggest that the six entities previously thought to be different species or subspecies might actually represent only three distinct segregates. We further discuss the limited phylogenetic informativeness found in our GBS approach and its utility to disentangle relationships within recent and rapidly evolving species complexes. Our study is the first to demonstrate the utility of GBS data to reconstruct relationships within young (similar to 2 Ma) Neotropical plant clades, opening new avenues for studies of species complexes that populate the species-rich orchid family.
  •  
10.
  • Serna-Sanchez, M. A., et al. (författare)
  • Plastid phylogenomics resolves ambiguous relationships within the orchid family and provides a solid timeframe for biogeography and macroevolution
  • 2021
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent phylogenomic analyses based on the maternally inherited plastid organelle have enlightened evolutionary relationships between the subfamilies of Orchidaceae and most of the tribes. However, uncertainty remains within several subtribes and genera for which phylogenetic relationships have not ever been tested in a phylogenomic context. To address these knowledge-gaps, we here provide the most extensively sampled analysis of the orchid family to date, based on 78 plastid coding genes representing 264 species, 117 genera, 18 tribes and 28 subtribes. Divergence times are also provided as inferred from strict and relaxed molecular clocks and birth-death tree models. Our taxon sampling includes 51 newly sequenced plastid genomes produced by a genome skimming approach. We focus our sampling efforts on previously unplaced clades within tribes Cymbidieae and Epidendreae. Our results confirmed phylogenetic relationships in Orchidaceae as recovered in previous studies, most of which were recovered with maximum support (209 of the 262 tree branches). We provide for the first time a clear phylogenetic placement for Codonorchideae within subfamily Orchidoideae, and Podochilieae and Collabieae within subfamily Epidendroideae. We also identify relationships that have been persistently problematic across multiple studies, regardless of the different details of sampling and genomic datasets used for phylogenetic reconstructions. Our study provides an expanded, robust temporal phylogenomic framework of the Orchidaceae that paves the way for biogeographical and macroevolutionary studies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy