SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dohlmar Frida) "

Sökning: WFRF:(Dohlmar Frida)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Dohlmar, Frida, et al. (författare)
  • An audit of high dose-rate prostate brachytherapy treatment planning at six Swedish clinics
  • 2021
  • Ingår i: Journal of Contemporary Brachytherapy. - : TERMEDIA PUBLISHING HOUSE LTD. - 1689-832X .- 2081-2841. ; 13:1, s. 59-71
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: High dose-rate prostate brachytherapy has been implemented in Sweden in the late 1980s and early 1990s in six clinics using the same schedule: 20 Gy in two fractions combined with 50 Gy in 25 fractions with external beam radiation therapy. Thirty years have passed and during these years, various aspects of the treatment process have developed, such as ultrasound-guided imaging and treatment planning system. An audit was conducted, including a questionnaire and treatment planning, which aimed to gather knowledge about treatment planning methods in Swedish clinics. Material and methods: A questionnaire and a treatment planning case (non-anatomical images) were sent to six Swedish clinics, in which high-dose-rate prostate brachytherapy is performed. Treatment plans were compared using dosimetric indices and equivalent 2 Gy doses (EQD(2)). Treatment planning system report was used to compare dwell positions and dwell times. Results: For all the clinics, the planning aim for the target was 10.0 Gy, but the volume to receive the dose differed from 95% to 100%. Dose constraints for organs at risk varied with up to 2 Gy. The dose to 90% of target volume ranged from 10.0 Gy to 11.1 Gy, equivalent to 26.0 Gy EQD(2) and 31.3 Gy EQD(2), respectively. Dose non-homogeneity ratio differed from 0.18 to 0.32 for clinical target volume (CTV) in treatment plans and conformity index ranged from 0.52 to 0.59 for CTV. Conclusions: Dose constraints for the organs at risk are showing a larger variation than that reflected in compared treatments plans. In all treatment plans in our audit, at least 10 Gy was administered giving a total treatment of 102 Gy EQD(2), which is in the upper part of the prescription doses published in the GEC/ESTRO recommendations.
  •  
3.
  • Dohlmar, Frida, et al. (författare)
  • Validation of automated post-adjustments of HDR prostate brachytherapy treatment plans by quantitative measures and oncologist observer study
  • 2023
  • Ingår i: Brachytherapy. - : Elsevier BV. - 1538-4721 .- 1873-1449. ; 22:3, s. 407-415
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: The aim was to evaluate a postprocessing optimization algorithm's ability to improve the spatial properties of a clinical treatment plan while preserving the target coverage and the dose to the organs at risk. The goal was to obtain a more homogenous treatment plan, minimizing the need for manual adjustments after inverse treatment planning. MATERIALS AND METHODS: The study included 25 previously treated prostate cancer pa-tients. The treatment plans were evaluated on dose-volume histogram parameters established clin-ical and quantitative measures of the high dose volumes. The volumes of the four largest hot spots were compared and complemented with a human observer study with visual grading by eight oncologists. Statistical analysis was done using ordinal logistic regression. Weighted kappa and Fleiss' kappa were used to evaluate intra-and interobserver reliability. RESULTS: The quantitative analysis showed that there was no change in planning target volume (PTV) coverage and dose to the rectum. There were significant improvements for the adjusted treatment plan in: V150% and V200% for PTV, dose to urethra, conformal index, and dose nonhomogeneity ratio. The three largest hot spots for the adjusted treatment plan were significantly smaller compared to the clinical treatment plan. The observers preferred the adjusted treatment plan in 132 cases and the clinical in 83 cases. The observers preferred the adjusted treatment plan on homogeneity and organs at risk but preferred the clinical plan on PTV coverage. CONCLUSIONS: Quantitative analysis showed that the postadjustment optimization tool could improve the spatial properties of the treatment plans while maintaining the target coverage.
  •  
4.
  • Flejmer, Anna M., et al. (författare)
  • Analytical Anisotropic Algorithm versus Pencil Beam Convolution for treatment planning of breast cancer: implications for target coverage and radiation burden of normal tissue
  • 2015
  • Ingår i: Anticancer Research. - : International Institute of Anticancer Research. - 0250-7005 .- 1791-7530. ; 35:5, s. 2841-2848
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: The present study aimed to investigate the implications of using the analytical anisotropic algorithm (AAA) for calculation of target coverage and radiation burden of normal tissues. Most model parameters, recommendations and planning guidelines associated with a certain outcome are from the era of pencil beam convolution (PBC) calculations on relatively simple assumptions of energy transport in media. Their relevance for AAA calculations that predict more realistic dose distributions needs to be evaluated. Patients and Methods: Forty patients with left-sided breast cancer receiving 3D conformal radiation therapy were planned using PBC with a standard protocol with 50 Gy in 25 fractions according to existing re-commendations. The plans were subsequently recalculated with the AAA and relevant dose parameters were determined and compared to their PBC equivalents. Results: The majority of the AAA-based plans had a significantly worse coverage of the planning target volume and also a higher maximum dose in hotspots near sensitive structures, suggesting that these criteria could be relaxed for AAA-calculated plans. Furthermore, the AAA predicts higher volumes of the ipsilateral lung will receive doses below 25 Gy and smaller volume doses above 25 Gy. These results indicate that lung tolerance criteria might also have to be relaxed for AAA planning in order to maintain the level of normal tissue toxicity. The AAA also predicts lower doses to the heart, thus indicating that this organ might be more sensitive to radiation than thought from PBC-based calculations. Conclusion: The AAA should be preferred over the PBC algorithm for breast cancer radiotherapy as it gives more realistic dose distributions. Guidelines for plan acceptance might have to be re-evaluated to account for differences in dose predictions in order to maintain the current levels of control and complication rates. The results also suggest an increased radiosensitivity of the heart, thus indicating that a revision of the current models for cardiovascular complications may be needed.
  •  
5.
  •  
6.
  • Flejmer, Anna M., et al. (författare)
  • Potential benefit of scanned proton beam versus photons as adjuvant radiation therapy in breast cancer
  • 2015
  • Ingår i: International Journal of Particle Therapy. - 2331-5180. ; 1:4, s. 845-855
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: To investigate the feasibility of using scanned proton beams as adjuvant radiation therapy for breast cancer. Long-term cardiopulmonary complications may worsen the quality of life and reduce the positive contribution of radiation therapy, which has been known to improve long-term control of locoregional disease as well as the long-term survival for these patients.Materials and Methods: Ten patients with stage I-III cancer (either after mastectomy or lumpectomy, left- or right-sided) were included in the study. The patients were identified from a larger group where dose heterogeneity in the target and/or hotspots in the normal tissues qualified them for irregular surface compensator planning with photons. The patients underwent planning with 2 scanned proton beam planning techniques, single-field uniform dose and intensity-modulated proton therapy, and the results were compared with those from irregular surface compensator. All volumes of interest were delineated and reviewed by experienced radio-oncologists. The patients were prescribed 50 GyRBE in 25 fractions. Dosimetric parameters of interest were compared with a paired, 2-tailed Student t test.Results: The proton plans showed comparable or better target coverage than the original photon plans. There were also large reductions with protons in mean doses to the heart (0.2 versus 1.3 GyRBE), left anterior descending artery (1.4 versus 6.4 GyRBE), and the ipsilateral lung (6.3 versus 7.7 GyRBE). This reduction is important from the point of view of the quality of life of the patients after radiation therapy. No significant differences were found between single-field uniform dose and intensity-modulated proton therapy plans.Conclusion: Spot scanning technique with protons may improve target dose homogeneity and further reduce doses to the organs at risk compared with advanced photon techniques. The results from this study indicate a potential for protons as adjuvant radiation therapy in breast cancer and a further step toward the individualization of treatment based on anatomic and comorbidity characteristics.
  •  
7.
  •  
8.
  • Flejmer, Anna M., et al. (författare)
  • Respiratory gating for proton beam scanning versus photon 3D-CRT for breast cancer radiotherapy
  • 2016
  • Ingår i: Acta Oncologica. - 0284-186X .- 1651-226X. ; 55:5, s. 577-583
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Respiratory gating and proton therapy have both been proposed to reduce the cardiopulmonary burden in breast cancer radiotherapy. This study aims to investigate the additional benefit of proton radiotherapy for breast cancer with and without respiratory gating.Material and methods Twenty left-sided patients were planned on computed tomography (CT)-datasets acquired during enhanced inspiration gating (EIG) and free-breathing (FB), using photon three-dimensional conformal radiation therapy (3D-CRT) and scanned proton beams. Ten patients received treatment to the whole breast only (WBO) and 10 were treated to the breast and the regional lymph nodes (BRN). Dosimetric parameters characterizing the coverage of target volumes and the cardiopulmonary burden were compared using a paired, two-tailed Student’s t-test.Results Protons ensured comparable or better target coverage than photons in all patients during both EIG and FB. The heterogeneity index decreased from 12% with photons to about 5% with protons. The mean dose to the ipsilateral lung was reduced in BRN patients from 12 Gy to 7 Gy (RBE) in EIG and from 14 Gy to 6-7 Gy (RBE) in FB, while for WBO patients all values were about 5-6 Gy (RBE). The mean dose to heart decreased by a factor of four in WBO patients [from 1.1 Gy to 0.3 Gy (RBE) in EIG and from 2.1 Gy to 0.5 Gy (RBE) in FB] and 10 in BRN patients [from 2.1 Gy to 0.2 Gy (RBE) in EIG and from 3.4 Gy to 0.3 Gy (RBE) in FB]. Similarly, the mean and the near maximum dose to left anterior descending artery (LAD) were significantly lower (p<0.05) with protons in comparison with photons.Conclusion Proton spot scanning has a high potential to reduce the irradiation of organs at risk and other normal tissues for most patients, beyond what could be achieved with EIG and photon therapy. The largest dose sparing has been seen for BRN patients, both in terms of cardiopulmonary burden and integral dose.
  •  
9.
  • Morén, Björn, 1987-, et al. (författare)
  • Technical note: evaluation of a spatial optimization model for prostate high dose‐rate brachytherapy in a clinical treatment planning system
  • 2023
  • Ingår i: Medical physics (Lancaster). - : WILEY. - 0094-2405 .- 2473-4209. ; 50:2, s. 688-693
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundSpatial properties of a dose distribution, such as volumes of contiguous hot spots, are of clinical importance in treatment planning for high dose-rate brachytherapy (HDR BT). We have in an earlier study developed an optimization model that reduces the prevalence of contiguous hot spots by modifying a tentative treatment plan. PurposeThe aim of this study is to incorporate the correction of hot spots in a standard inverse planning workflow and to validate the integrated model in a clinical treatment planning system. The spatial function is included in the objective function for the inverse planning, as opposed to in the previous study where it was applied as a separate post-processing step. Our aim is to demonstrate that fine-adjustments of dose distributions, which are often performed manually in todays clinical practice, can be automated. MethodsA spatial optimization function was introduced in the treatment planning system RayStation (RaySearch Laboratories AB, Stockholm, Sweden) via a research interface. A series of 10 consecutive prostate patients treated with HDR BT was retrospectively replanned with and without the spatial function. ResultsOptimization with the spatial function decreased the volume of the largest contiguous hot spot by on average 31%, compared to if the function was not included. The volume receiving at least 200% of the prescription dose decreased by on average 11%. Target coverage, measured as the fractions of the clinical target volume (CTV) and the planning target volume (PTV) receiving at least the prescription dose, was virtually unchanged (less than a percent change for both metrics). Organs-at-risk received comparable or slightly decreased doses if the spatial function was included in the optimization model. ConclusionsOptimization of spatial properties such as the volume of contiguous hot spots can be integrated in a standard inverse planning workflow for brachytherapy, and need not be conducted as a separate post-processing step.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy