SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Domenici Paolo) "

Sökning: WFRF:(Domenici Paolo)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Domenici, Paolo, et al. (författare)
  • Predator-induced morphology enhances escape locomotion in crucian carp
  • 2008
  • Ingår i: Royal Society of London. Proceedings B. Biological Sciences. - : The Royal Society. - 1471-2954. ; 275:1631, s. 195-201
  • Tidskriftsartikel (refereegranskat)abstract
    • Fishes show a remarkable diversity of shapes which have been associated with their swimming abilities and anti-predator adaptations. The crucian carp (Carassius carassius) provides an extreme example of phenotypic plasticity in body shape which makes it a unique model organism for evaluating the relationship between body form and function in fishes. In crucian carp, a deep body is induced by the presence of pike (Esox lucius), and this results in lower vulnerability to gape-limited predators, such as pike itself. Here, we demonstrate that deep-bodied crucian carp attain higher speed, acceleration and turning rate during anti-predator responses than shallow-bodied crucian carp. Therefore, a predator-induced morphology in crucian carp enhances their escape locomotor performance. The deep-bodied carp also show higher percentage of muscle mass. Therefore, their superior performance in escape swimming may be due to a combination of higher muscle power and higher thrust.
  •  
2.
  • Herbert-Read, James E., et al. (författare)
  • Proto-cooperation : group hunting sailfish improve hunting success by alternating attacks on grouping prey
  • 2016
  • Ingår i: Proceedings of the Royal Society of London. Biological Sciences. - : The Royal Society. - 0962-8452 .- 1471-2954. ; 283:1842
  • Tidskriftsartikel (refereegranskat)abstract
    • We present evidence of a novel form of group hunting. Individual sailfish (Istiophorus platypterus) alternate attacks with other group members on their schooling prey (Sardinella aurita). While only 24% of attacks result in prey capture, multiple prey are injured in 95% of attacks, resulting in an increase of injured fish in the school with the number of attacks. How quickly prey are captured is positively correlated with the level of injury of the school, suggesting that hunters can benefit from other conspecifics' attacks on the prey. To explore this, we built a mathematical model capturing the dynamics of the hunt. We show that group hunting provides major efficiency gains (prey caught per unit time) for individuals in groups of up to 70 members. We also demonstrate that a free riding strategy, where some individuals wait until the prey are sufficiently injured before attacking, is only beneficial if the cost of attacking is high, and only then when waiting times are short. Our findings provide evidence that cooperative benefits can be realized through the facilitative effects of individuals' hunting actions without spatial coordination of attacks. Such 'proto-cooperation' may be the pre-cursor to more complex group-hunting strategies.
  •  
3.
  • Kurvers, Ralf H. J. M., et al. (författare)
  • The Evolution of Lateralization in Group Hunting Sailfish
  • 2017
  • Ingår i: Current Biology. - : Elsevier BV. - 0960-9822 .- 1879-0445. ; 27:4, s. 521-526
  • Tidskriftsartikel (refereegranskat)abstract
    • Lateralization is widespread throughout the animal kingdom [1-7] and can increase task efficiency via shortening reaction times and saving on neural tissue [8-16]. However, lateralization might be costly because it increases predictability [17-21]. In predator-prey interactions, for example, predators might increase capture success because of specialization in a lateralized attack, but at the cost of increased predictability to their prey, constraining the evolution of lateralization. One unexplored mechanism for evading such costs is group hunting: this would allow individual-level specialization, while still allowing for group-level unpredictability. We investigated this mechanism in group hunting sailfish, Istiophorus platypterus, attacking schooling sardines, Sardinella aurita. During these attacks, sailfish alternate in attacking the prey using their elongated bills to slash or tap the prey [22-24]. This rapid bill movement is either leftward or rightward. Using behavioral observations of identifiable individual sailfish hunting in groups, we provide evidence for individual-level attack lateralization in sailfish. More strongly lateralized individuals had a higher capture success. Further evidence of lateralization comes from morphological analyses of sailfish bills that show strong evidence of one-sided micro-teeth abrasions. Finally, we show that attacks by single sailfish are indeed highly predictable, but predictability rapidly declines with increasing group size because of a lack of population-level lateralization. Our results present a novel benefit of group hunting: by alternating attacks, individual-level attack lateralization can evolve, without the negative consequences of individual-level predictability. More generally, our results suggest that group hunting in predators might provide more suitable conditions for the evolution of strategy diversity compared to solitary life.
  •  
4.
  • Marras, Stefano, et al. (författare)
  • Not So Fast : Swimming Behavior of Sailfish during Predator-Prey Interactions using High-Speed Video and Accelerometry
  • 2015
  • Ingår i: Integrative and Comparative Biology. - : Oxford University Press (OUP). - 1540-7063 .- 1557-7023. ; 55:4, s. 719-727
  • Tidskriftsartikel (refereegranskat)abstract
    • Synopsis Billfishes are considered among the fastest swimmers in the oceans. Despite early estimates of extremely high speeds, more recent work showed that these predators (e.g., blue marlin) spend most of their time swimming slowly, rarely exceeding 2 m s(-1). Predator-prey interactions provide a context within which one may expect maximal speeds both by predators and prey. Beyond speed, however, an important component determining the outcome of predator-prey encounters is unsteady swimming (i.e., turning and accelerating). Although large predators are faster than their small prey, the latter show higher performance in unsteady swimming. To contrast the evading behaviors of their highly maneuverable prey, sailfish and other large aquatic predators possess morphological adaptations, such as elongated bills, which can be moved more rapidly than the whole body itself, facilitating capture of the prey. Therefore, it is an open question whether such supposedly very fast swimmers do use high-speed bursts when feeding on evasive prey, in addition to using their bill for slashing prey. Here, we measured the swimming behavior of sailfish by using high-frequency accelerometry and high-speed video observations during predator-prey interactions. These measurements allowed analyses of tail beat frequencies to estimate swimming speeds. Our results suggest that sailfish burst at speeds of about 7 m s(-1) and do not exceed swimming speeds of 10 m s(-1) during predator-prey interactions. These speeds are much lower than previous estimates. In addition, the oscillations of the bill during swimming with, and without, extension of the dorsal fin (i.e., the sail) were measured. We suggest that extension of the dorsal fin may allow sailfish to improve the control of the bill and minimize its yaw, hence preventing disturbance of the prey. Therefore, sailfish, like other large predators, may rely mainly on accuracy of movement and the use of the extensions of their bodies, rather than resorting to top speeds when hunting evasive prey.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy