SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dong Wenjing) "

Sökning: WFRF:(Dong Wenjing)

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Afzal, Muhammad, et al. (författare)
  • Analysis of a perovskite-ceria functional layer-based solid oxide fuel cell
  • 2017
  • Ingår i: International journal of hydrogen energy. - : Elsevier. - 0360-3199 .- 1879-3487. ; 42:27, s. 17536-17543
  • Tidskriftsartikel (refereegranskat)abstract
    • A fuel cell based on a functional layer of perovskite Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCF) composited samarium doped ceria (SDC) has been developed. The device achieves a peak power density of 640.4 mW cm(-2) with an open circuit voltage (OCV) of 1.04 Vat 560 degrees C using hydrogen and air as the fuel and oxidant, respectively. A numerical model is applied to fit the experimental cell voltage. The kinetics of anodic and cathodic reactions are modeled based on the measurements obtained by electrochemical impedance spectroscopy (EIS). Modeling results are in well agreement with the experimental data. Mechanical stability of the cell is also examined by using analysis with field emission scanning electron microscope (FESEM) associated with energy dispersive spectroscopy (EDS) after testing the cell performance.
  •  
2.
  • Deng, Hui, et al. (författare)
  • The electrolyte-layer free fuel cell using a semiconductor-ionic Sr2Fe1.5Mo0.5O6-delta - Ce0.8Sm0.2O2-delta composite functional membrane
  • 2017
  • Ingår i: International journal of hydrogen energy. - : Pergamon Press. - 0360-3199 .- 1879-3487. ; 42:39, s. 25001-25007
  • Tidskriftsartikel (refereegranskat)abstract
    • Commercial double Perovskite Sr2Fe1.5Mo0.5O6-delta (SFM), a high performance and redox stable electrode material for solid oxide fuel cell (SOFC), has been used for the electrolyte (layer)-free fuel cell (EFFC) and also as the cathode for the electrolyte based SOFC in a comprehensive study. The EFFC with a homogeneous mixture of Ce0.8Sm0.2O2-delta (SDC) and SFM achieved a higher power density (841 mW cm(-2)) at 550 degrees C, while the SDC electrolyte based SOFC, using the SDC-SFM composite as cathode, just reached 326 mW cm(-2) at the same temperature. The crystal structure and the morphology of the SFM-SDC composite were characterized by X-ray diffraction analysis (XRD), and scanning electron microscope (SEM), respectively. The electrochemical impedance spectroscopy (EIS) results showed that the charge transfer resistance of EFFCs were much lower than that of the electrolyte-based SOFC. To illustrate the operating principle of EFFC, we also conducted the rectification characteristics test, which confirms the existence of a Schottky junction structure to avoid the internal electron short circuiting. This work demonstrated advantages of the semiconductor-ionic SDC-SFM material for advanced EFFCs.
  •  
3.
  • Dong, Wenjing, et al. (författare)
  • All in One Multifunctional Perovskite Material for Next Generation SOFC
  • 2016
  • Ingår i: Electrochimica Acta. - : Elsevier. - 0013-4686 .- 1873-3859. ; 193, s. 225-230
  • Tidskriftsartikel (refereegranskat)abstract
    • Multifunctional roles of La0.2Sr0.25Ca0.45TiO3 (LSCT) perovskite material as anode, cathode, and electrolyte for low temperature solid oxide fuel cell (LT-SOFC) are discovered for the first time, and have been investigated via electrochemical impedance spectroscopy (EIS) and fuel cell (FC) measurements. LSCT resistance decreases prominently in FC environment as shown in this study. An improved performance was observed by compositing LSCT with samaria doped ceria (SDC) at 550 degrees C when the FC power density increased from tens of mW cm(-2) for the pure LSCT system up to hundreds of mW cm(-2). The improved conductivity of LSCT-SDC composite is highlighted. The multifunctionality of LSCT as cathode, anode and electrolyte could be attributed to different conducting behavior at high and low oxygen partial pressures and ionic conduction at intermediate oxygen partial pressures. These new discoveries not only indicate great potential for exploring multifunctional perovskites for the next generation SOFC, but also deepen SOFC science and develop new technologies.
  •  
4.
  • Dong, Wenjing, et al. (författare)
  • Charge transport study of perovskite solar cells through constructing electron transport channels
  • 2017
  • Ingår i: Physica Status Solidi (a) applications and materials science. - : Wiley-VCH Verlagsgesellschaft. - 1862-6300 .- 1862-6319. ; 214:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Perovskite solar cells (PSC) have attracted much attention in the recent years. It is important to understand their working principle in order to uncover the reasons behind their high efficiency. In this study, the carrier transport mechanism of PSC by controlling the structure of a scaffold is investigated. CeO2 is used as an electron blocking material in PSCs to study the electron transport behavior for the first time. The influence of light absorption can be excluded because CeO2 has a similar bandgap to TiO2. A variety of scaffolds are constructed using nano-TiO2 and CeO2. The results show that electrons can transport from light absober (perovskite) to FTO electrode (external circuit) through two kinds of channels. The energy band level, as well as the electronic conductivity of the scaffolds, is are key issues that affect electron transport. Although perovskites are able to transport both electrons and holes, it is still necessary to have effective electron transport channels (ETCs) between perovskite and external circuit for the sake of high efficiency. Electrochemical impedance spectroscopy analysis suggests that the lack of such channels will result in high recombination. The number of ETCs and effecient electron-hole separation are also proven to be important for cell performance.
  •  
5.
  • Liu, Xueqi, et al. (författare)
  • Study on charge transportation in the layer-structured oxide composite of SOFCs
  • 2018
  • Ingår i: International journal of hydrogen energy. - : Elsevier. - 0360-3199 .- 1879-3487. ; 43:28, s. 12773-12781
  • Tidskriftsartikel (refereegranskat)abstract
    • In the past few years, triple (H+/O2-/e(-)) conducting materials have been regarded as one of the most promising electrode categories for solid oxide fuel cells (SOFCs). In this work, a layer-structured LiNi0.8Co0.15Al0.05O2-delta (LNCA) with triple conduction has been studied. The semiconductor-ionic conductor (SIC) LNCA-SDC composite has been fabricated by compositing the LNCA material with ionic conductor, i.e., samarium doped ceria (SDC). The electrochemical performance of the LNCA-SDC composite was studied by electrochemical impedance spectroscopy, while its electronic conductivity was confirmed by d.c. polarization method. It is found that the ionic conductivity of the composite is higher than the electronic conductivity by several orders of magnitude. The charge carriers and transportation properties of LNCA-SDC were studied using H+ and O2- blocking layer cells respectively. Results prove that the LNCA-SDC composite is a hybrid oxygen ion-proton conducting material. The oxygen ion conduction is dominated at low temperature (425 -500 degrees C), however, it is comparable with H+ conduction at high temperature (550 degrees C). Additionally, the formation of Li2CO3 under fuel cell operation environment was observed and the mechanism of the hybrid conductivity of LNCA-SDC was studied.
  •  
6.
  • Liu, Yanyan, et al. (författare)
  • A Single-Phase Mixed-Conductive Pr-Doped CeO2 Membrane for Advanced Fuel-to-Electricity Technology
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Pr-doped CeO2 has exhibited many interesting properties relying on the flexible valence of praseodymium. The tailorable doping contents of praseodymium determine the ionic or mixed electronic-ionic conductivity properties of the Pr-doped CeO2. Interestingly, the characteristic feature that praseodymium element preferably attributes on the surface of ceria particles facilitates the surface exchange kinetics for oxygen transport relying on oxygen vacancies and resulting in high ionic conduction. Hereby, we investigated a 10 mol.% Pr-doped CeO2 (Pr-CeO2) synthesized by hydrothermal method focusing on its surface conductive properties. The as-prepared Pr-CeO2 exhibited a high electrical conductivity of 0.36 S cm-1 at 600 ℃. Using this mixed conductive Pr-CeO2, we fabricated a solid oxide fuel cell (SOFC) device in a ‘sandwich’ configuration while p-type semiconductor Ni0.8Co0.15Al0.05Li-oxide was pasted on both sides of Pr-CeO2 membrane layer. This device exhibited a comparable peak power density of 776 mW cm-2 at 600 ℃ to the conventional ionic conducting electrolyte-based SOFCs. Furthermore, the mechanism for surface conductivity enhancement has been discussed. These findings reveal an alternative methodology to prepare materials with significant impacts on advanced R&D SOFC technology.
  •  
7.
  • Liu, Yanyan, et al. (författare)
  • Flowerlike CeO2 microspheres coated with Sr2Fe1.5Mo0.5Ox nanoparticles for an advanced fuel cell
  • 2015
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Flowerlike CeO2 coated with Sr(2)Fe(1.5)Mo(0.5)Ox (Sr-Fe-Mo-oxide) nanoparticles exhibits enhanced conductivity at low temperatures (300-600 degrees C), e.g. 0.12 S cm(-1) at 600 degrees C, this is comparable to pure ceria (0.1 S cm(-1) at 800 degrees C). Advanced single layer fuel cell was constructed using the flowerlike CeO2/Sr-Fe-Mo-oxide layer attached to a Ni-foam layer coated with the conducting transition metal oxide. Such fuel cell has yielded a peak power density of 802 mWcm(-2) at 550 degrees C. The mechanism of enhanced conductivity and cell performance were analyzed. These results provide a promising strategy for developing advanced low-temperature SOFCs.
  •  
8.
  • Meng, Yuanjing, et al. (författare)
  • High-performance SOFC based on a novel semiconductor-ionic SrFeO3-delta-Ce0.8Sm0.2O2-delta membrane
  • 2018
  • Ingår i: International journal of hydrogen energy. - : Elsevier. - 0360-3199 .- 1879-3487. ; 43:28, s. 12697-12704
  • Tidskriftsartikel (refereegranskat)abstract
    • The semiconductor-ionic composite membrane has been recently developed for a novel solid oxide fuel cell (SOFC), i.e., the semiconductor-ion membrane fuel cell (SIMFC). In this work, the perovskite-type SrFeO3-delta (SFO) as semiconductor material was composited with ionic conductor Ce0.8Sm0.2O2-delta (SDC) to form the SFO-SDC composite membrane for SIMFCs. The SFO-SDC SIMFCs using the optimized weight ratio of 3:7 SFO-SDC membrane obtained the best performances, 780 mW cm(-2) at 550 degrees C, compared to 348 mW cm(-2) obtained from the pure SDC electrolyte fuel cell. Introduction of SFO into SDC can extend the triple phase boundary and provide more active sites for accelerating the fuel cell reactions, thus significantly enhanced the cell power output. Moreover, SFO was employed as the cathode, and a higher power output, 907 mW cm(-2) was achieved, suggesting that SFO cathode is more compatible for the SFO-SDC system in SIMFCs. This work provides an attractive strategy for the development of low temperature SOFCs.
  •  
9.
  • Meng, Yuanjing, et al. (författare)
  • Low-temperature fuel cells using a composite of redox-stable perovskite oxide La0.7Sr0.3Cr0.5Fe0.5O3-delta and ionic conductor
  • 2017
  • Ingår i: Journal of Power Sources. - : Elsevier. - 0378-7753 .- 1873-2755. ; 366, s. 259-264
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel solid oxide fuel cell (SOFC) incorporating the semiconductor with the ionic conductor to replace the traditional electrolyte layer with improved performance has been recently reported. In the present work, we found that the redox stable electrode material La0.7Sr0.3Cr0.5Fe0.5O3-delta(LSCrF) can be considered as a good candidate for such configuration, electrolyte layer-free fuel cells (EFFCs), due to its high ionic and electronic conductivities, excellent catalytic activity and good chemical stability. EFFCs based on the composite of perovskite oxide LSCrF and ionic conductor Ce0.8Sm0.2O2-delta (SDC) offered promising performances, i.e., 1059 mW cm(-2) at 550 degrees C without any electronic short circuiting problem. It even exhibited a highly promising result of 553 mW cm(-2) at 470 degrees C in further low-temperature operation. These high performances can be attributed to the improved conductivity, more triple-phase boundaries (TPB) and accelerated oxygen reduction reaction (ORR) of LSCrF-SDC composite. The influence of the weight ratio between LSCrF and SDC on the EFFC electrochemical performance was investigated. This new discovery indicates a great potential for exploring multifunctional perovskites for the new SOFC technologies.
  •  
10.
  • Mushtaq, Naveed, et al. (författare)
  • Tuning the Energy Band Structure at Interfaces of the SrFe0.75Ti0.25O3-delta-Sm0.25Ce0.75O2-delta Heterostructure for Fast Ionic Transport
  • 2019
  • Ingår i: ACS Applied Materials and Interfaces. - : AMER CHEMICAL SOC. - 1944-8244 .- 1944-8252. ; 11:42, s. 38737-38745
  • Tidskriftsartikel (refereegranskat)abstract
    • Interface engineering holds huge potential for enabling exceptional physical properties in heterostructure materials via tuning properties at the atomic level. In this study, a heterostructure built by a new redox stable semiconductor SrFe0.75Ti0.25O3-delta (SFT) and an ionic conductor Sm0.25Ce0.75O2 (SDC) is reported. The SFT-SDC heterostructure exhibits a high ionic conductivity >0.1 S/cm at 520 degrees C, which is 1 order of magnitude higher than that of bulk SDC. When it was applied into the fuel cell, the SFT-SDC can realize favorable electrolyte functionality and result in an excellent power density of 920 mW cm(-2) at 520 degrees C. The prepared SFT-SDC heterostructure materials possess both electronic and ionic conduction, where electron states modulate local electrical field to facilitate ion transport. Further investigations to calculate the structure and electronic structure/state of SFT and SDC are done using density functional theory (DFT). It is found that the reconstruction of the energy band at interfaces is responsible for such enhanced ionic conductivity and cell power output. The current study about the perovskite-based heterostructure presents a novel strategy for developing advanced ceramic fuel cells.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy