SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Donzella C.) "

Sökning: WFRF:(Donzella C.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ballan, M., et al. (författare)
  • Nuclear physics midterm plan at Legnaro National Laboratories (LNL)
  • 2023
  • Ingår i: European Physical Journal Plus. - 2190-5444. ; 138:8, s. 3-26
  • Tidskriftsartikel (refereegranskat)abstract
    • The next years will see the completion of the radioactive ion beam facility SPES (Selective Production of Exotic Species) and the upgrade of the accelerators complex at Istituto Nazionale di Fisica Nucleare – Legnaro National Laboratories (LNL) opening up new possibilities in the fields of nuclear structure, nuclear dynamics, nuclear astrophysics, and applications. The nuclear physics community has organised a workshop to discuss the new physics opportunities that will be possible in the near future by employing state-of-the-art detection systems. A detailed discussion of the outcome from the workshop is presented in this report.
  •  
2.
  • Perot, B., et al. (författare)
  • Measurement of 14 MeV neutron-induced prompt gamma-ray spectra from 15 elements found in cargo containers
  • 2008
  • Ingår i: Applied Radiation and Isotopes. - : Elsevier BV. - 0969-8043 .- 1872-9800. ; 66:4, s. 421-434
  • Tidskriftsartikel (refereegranskat)abstract
    • Within the EURopean Illicit TRAfficking Countermeasures Kit (EURITRACK) project, the gamma-ray spectra produced in a series of materials by 14-MeV tagged-neutron beams have been collected in the inspection portal equipped with large volume Nal(Tl) detectors, in order to build a database of signatures for various elements: C, N, O, Na, Al, Si, Cl, K, Ca, Cr, Fe, Ni, Cu, Zn, Pb. The measured spectra have been compared with prediction from Monte Carlo simulations to verify the consistency of the relevant nuclear data inputs. This library of measured 14-MeV neutron-induced gamma-ray spectra is currently used in a data processing algorithm to unfold the energy spectra of the transported goods into elementary contributions, thus allowing material identification.
  •  
3.
  • Viesti, G., et al. (författare)
  • Scanning cargo containers with tagged neutrons
  • 2007
  • Ingår i: 7th Latin American Symposium on Nuclear Physics and Applications. - : American Institute of Physics (AIP). - 0735404615 - 9780735404618 ; , s. 57-62
  • Konferensbidrag (refereegranskat)abstract
    • A new Tagged Neutron Inspection System (TNIS) able to detect illicit materials such as explosives and narcotics in cargo containers has been developed within the EURopean Illicit TRAfficing Countermeasures Kit (EURITRACK) project. After the R&D phase, the inspection portal has been installed and commissioned at the Rijeka seaport in Croatia, where it has been operated in connection with the existing X-ray scanner for a first two-month demonstration campaign. Results obtained are presented and discussed in this paper.
  •  
4.
  •  
5.
  • Abella, J., et al. (författare)
  • SAFEXPLAIN : Safe and Explainable Critical Embedded Systems Based on AI
  • 2023
  • Ingår i: Proceedings -Design, Automation and Test in Europe, DATE. - : Institute of Electrical and Electronics Engineers Inc.. - 9783981926378
  • Konferensbidrag (refereegranskat)abstract
    • Deep Learning (DL) techniques are at the heart of most future advanced software functions in Critical Autonomous AI-based Systems (CAIS), where they also represent a major competitive factor. Hence, the economic success of CAIS industries (e.g., automotive, space, railway) depends on their ability to design, implement, qualify, and certify DL-based software products under bounded effort/cost. However, there is a fundamental gap between Functional Safety (FUSA) requirements on CAIS and the nature of DL solutions. This gap stems from the development process of DL libraries and affects high-level safety concepts such as (1) explainability and traceability, (2) suitability for varying safety requirements, (3) FUSA-compliant implementations, and (4) real-time constraints. As a matter of fact, the data-dependent and stochastic nature of DL algorithms clashes with current FUSA practice, which instead builds on deterministic, verifiable, and pass/fail test-based software. The SAFEXPLAIN project tackles these challenges and targets by providing a flexible approach to allow the certification - hence adoption - of DL-based solutions in CAIS building on: (1) DL solutions that provide end-to-end traceability, with specific approaches to explain whether predictions can be trusted and strategies to reach (and prove) correct operation, in accordance to certification standards; (2) alternative and increasingly sophisticated design safety patterns for DL with varying criticality and fault tolerance requirements; (3) DL library implementations that adhere to safety requirements; and (4) computing platform configurations, to regain determinism, and probabilistic timing analyses, to handle the remaining non-determinism.
  •  
6.
  •  
7.
  • Perot, B., et al. (författare)
  • The EURITRACK project : Development of a tagged neutron inspection system for cargo containers
  • 2006
  • Ingår i: Proc SPIE Int Soc Opt Eng. - : SPIE. - 0819462691 - 9780819462695
  • Konferensbidrag (refereegranskat)abstract
    • The EURopean Illicit TRAfficing Countermeasures Kit project is part of the 6th European Union Framework Program, and aims at developing a neutron inspection system for detecting threat materials (explosives, drugs, etc.) in cargo containers. Neutron interaction in the container produces specific gamma-rays used to determine the chemical composition of the inspected material. An associated particle sealed tube neutron generator is developed to allow precise location of the interaction point by direction and time-of-flight measurements of the neutrons tagged by alpha-particles. The EURITRACK project consists in developing: a transportable deuterium-tritium neutron generator including a position sensitive alpha detector (8×8 matrix of YAP:Ce crystals coupled to a multi-anode photomultiplier), fast neutron and gamma-ray detectors, front-end electronics to perform coincidence and spectroscopic measurements, and an integrated software which manages neutron generator and detectors positioning, data acquisition and analysis. Hardware components have been developed and tested by the consortium partners. Current status of this work and provisional performances of the system assessed by Monte Carlo calculations are presented.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy