SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dormann Carsten F.) "

Sökning: WFRF:(Dormann Carsten F.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hudson, Lawrence N., et al. (författare)
  • The PREDICTS database : a global database of how local terrestrial biodiversity responds to human impacts
  • 2014
  • Ingår i: Ecology and Evolution. - : Wiley. - 2045-7758. ; 4:24, s. 4701-4735
  • Tidskriftsartikel (refereegranskat)abstract
    • Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species' threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project - and avert - future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups - including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems - ). We make site-level summary data available alongside this article. The full database will be publicly available in 2015.
  •  
2.
  • Carvalheiro, Luisa Gigante, et al. (författare)
  • The potential for indirect effects between co-flowering plants via shared pollinators depends on resource abundance, accessibility and relatedness
  • 2014
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 17:11, s. 1389-1399
  • Tidskriftsartikel (refereegranskat)abstract
    • Co-flowering plant species commonly share flower visitors, and thus have the potential to influence each other's pollination. In this study we analysed 750 quantitative plant-pollinator networks from 28 studies representing diverse biomes worldwide. We show that the potential for one plant species to influence another indirectly via shared pollinators was greater for plants whose resources were more abundant (higher floral unit number and nectar sugar content) and more accessible. The potential indirect influence was also stronger between phylogenetically closer plant species and was independent of plant geographic origin (native vs. non-native). The positive effect of nectar sugar content and phylogenetic proximity was much more accentuated for bees than for other groups. Consequently, the impact of these factors depends on the pollination mode of plants, e.g. bee or fly pollinated. Our findings may help predict which plant species have the greatest importance in the functioning of plant-pollination networks.
  •  
3.
  • Allan, Eric, et al. (författare)
  • Interannual variation in land-use intensity enhances grassland multidiversity
  • 2014
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 111:1, s. 308-313
  • Tidskriftsartikel (refereegranskat)abstract
    • Although temporal heterogeneity is a well-accepted driver of biodiversity, effects of interannual variation in land-use intensity (LUI) have not been addressed yet. Additionally, responses to land use can differ greatly among different organisms; therefore, overall effects of land-use on total local biodiversity are hardly known. To test for effects of LUI (quantified as the combined intensity of fertilization, grazing, and mowing) and interannual variation in LUI (SD in LUI across time), we introduce a unique measure of whole-ecosystem biodiversity, multidiversity. This synthesizes individual diversity measures across up to 49 taxonomic groups of plants, animals, fungi, and bacteria from 150 grasslands. Multidiversity declined with increasing LUI among grasslands, particularly for rarer species and aboveground organisms, whereas common species and belowground groups were less sensitive. However, a high level of interannual variation in LUI increased overall multidiversity at low LUI and was even more beneficial for rarer species because it slowed the rate at which the multidiversity of rare species declined with increasing LUI. In more intensively managed grasslands, the diversity of rarer species was, on average, 18% of the maximum diversity across all grasslands when LUI was static over time but increased to 31% of the maximum when LUI changed maximally over time. In addition to decreasing overall LUI, we suggest varying LUI across years as a complementary strategy to promote biodiversity conservation.
  •  
4.
  • Dormann, Carsten F., et al. (författare)
  • Biotic interactions in species distribution modelling : 10 questions to guide interpretation and avoid false conclusions
  • 2018
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 27:9, s. 1004-1016
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: Recent studies increasingly use statistical methods to infer biotic interactions from co‐occurrence information at a large spatial scale. However, disentangling biotic interactions from other factors that can affect co‐occurrence patterns at the macroscale is a major challenge.Approach: We present a set of questions that analysts and reviewers should ask to avoid erroneously attributing species association patterns to biotic interactions. Our questions relate to the appropriateness of data and models, the causality behind a correlative signal, and the problems associated with static data from dynamic systems. We summarize caveats reported by macroecological studies of biotic interactions and examine whether conclusions on the presence of biotic interactions are supported by the modelling approaches used.Findings: Irrespective of the method used, studies that set out to test for biotic interactions find statistical associations in species’ co‐occurrences. Yet, when compared with our list of questions, few purported interpretations of such associations as biotic interactions hold up to scrutiny. This does not dismiss the presence or importance of biotic interactions, but it highlights the risk of too lenient interpretation of the data. Combining model results with information from experiments and functional traits that are relevant for the biotic interaction of interest might strengthen conclusions.Main conclusions: Moving from species‐ to community‐level models, including biotic interactions among species, is of great importance for process‐based understanding and forecasting ecological responses. We hope that our questions will help to improve these models and facilitate the interpretation of their results. In essence, we conclude that ecologists have to recognize that a species association pattern in joint species distribution models will be driven not only by real biotic interactions, but also by shared habitat preferences, common migration history, phylogenetic history and shared response to missing environmental drivers, which specifically need to be discussed and, if possible, integrated into models.
  •  
5.
  • Dormann, Carsten F., et al. (författare)
  • Components of uncertainty in species distribution analysis: a case study of the Great Grey Shrike
  • 2008
  • Ingår i: Ecology. - : Wiley. - 0012-9658. ; 89:12, s. 3371-3386
  • Tidskriftsartikel (refereegranskat)abstract
    • Sophisticated statistical analyses are common in ecological research, particularly in species distribution modeling. The effects of sometimes arbitrary decisions during the modeling procedure on the final outcome are difficult to assess, and to date are largely unexplored. We conducted an analysis quantifying the contribution of uncertainty in each step during the model-building sequence to variation in model validity and climate change projection uncertainty. Our study system was the distribution of the Great Grey Shrike in the German federal state of Saxony. For each of four steps (data quality, collinearity method, model type, and variable selection), we ran three different options in a factorial experiment, leading to 81 different model approaches. Each was subjected to a fivefold cross-validation, measuring area under curve (AUC) to assess model quality. Next, we used three climate change scenarios times three precipitation realizations to project future distributions from each model, yielding 729 projections. Again, we analyzed which step introduced most variability (the four model-building steps plus the two scenario steps) into predicted species prevalences by the year 2050. Predicted prevalences ranged from a factor of 0.2 to a factor of 10 of present prevalence, with the majority of predictions between 1.1 and 4.2 (inter-quartile range). We found that model type and data quality dominated this analysis. In particular, artificial neural networks yielded low cross-validation robustness and gave very conservative climate change predictions. Generalized linear and additive models were very similar in quality and predictions, and superior to neural networks. Variations in scenarios and realizations had very little effect, due to the small spatial extent of the study region and its relatively small range of climatic conditions. We conclude that, for climate projections, model type and data quality were the most influential factors. Since comparison of model types has received good coverage in the ecological literature, effects of data quality should now come under more scrutiny.
  •  
6.
  •  
7.
  • Schleuning, Matthias, et al. (författare)
  • Specialization of Mutualistic Interaction Networks Decreases toward Tropical Latitudes
  • 2012
  • Ingår i: Current Biology. - : Elsevier BV. - 1879-0445 .- 0960-9822. ; 22:20, s. 1925-1931
  • Tidskriftsartikel (refereegranskat)abstract
    • Species-rich tropical communities are expected to be more specialized than their temperate counterparts [1-3]. Several studies have reported increasing biotic specialization toward the tropics [4-7], whereas others have not found latitudinal trends once accounting for sampling bias [8, 9] or differences in plant diversity [10, 11]. Thus, the direction of the latitudinal Specialization gradient remains contentious. With an unprecedented global data set, we investigated how biotic specialization between plants and animal pollinators or seed dispersers is associated with latitude, past and contemporary climate, and plant diversity. We show that in contrast to expectation, biotic specialization of mutualistic networks is significantly lower at tropical than at temperate latitudes. Specialization was more closely related to contemporary climate than to past climate stability, suggesting that current conditions have a stronger effect on biotic specialization than historical community stability. Biotic specialization decreased with increasing local and regional plant diversity. This suggests that high specialization of mutualistic interactions is a response of pollinators and seed dispersers to low plant diversity. This could explain why the latitudinal specialization gradient is reversed relative to the latitudinal diversity gradient. Low mutualistic network specialization in the tropics suggests higher tolerance against extinctions in tropical than in temperate communities.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy