SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dorrepaal E.) "

Sökning: WFRF:(Dorrepaal E.)

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Maes, S.L., et al. (författare)
  • Environmental drivers of increased ecosystem respiration in a warming tundra
  • 2024
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 629:8010, s. 105-113
  • Tidskriftsartikel (refereegranskat)abstract
    • Arctic and alpine tundra ecosystems are large reservoirs of organic carbon. Climate warming may stimulate ecosystem respiration and release carbon into the atmosphere. The magnitude and persistency of this stimulation and the environmental mechanisms that drive its variation remain uncertain. This hampers the accuracy of global land carbon–climate feedback projections. Here we synthesize 136 datasets from 56 open-top chamber in situ warming experiments located at 28 arctic and alpine tundra sites which have been running for less than 1 year up to 25 years. We show that a mean rise of 1.4 °C [confidence interval (CI) 0.9–2.0 °C] in air and 0.4 °C [CI 0.2–0.7 °C] in soil temperature results in an increase in growing season ecosystem respiration by 30% [CI 22–38%] (n = 136). Our findings indicate that the stimulation of ecosystem respiration was due to increases in both plant-related and microbial respiration (n = 9) and continued for at least 25 years (n = 136). The magnitude of the warming effects on respiration was driven by variation in warming-induced changes in local soil conditions, that is, changes in total nitrogen concentration and pH and by context-dependent spatial variation in these conditions, in particular total nitrogen concentration and the carbon:nitrogen ratio. Tundra sites with stronger nitrogen limitations and sites in which warming had stimulated plant and microbial nutrient turnover seemed particularly sensitive in their respiration response to warming. The results highlight the importance of local soil conditions and warming-induced changes therein for future climatic impacts on respiration.
  •  
2.
  • Abbott, Benjamin W., et al. (författare)
  • Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire : an expert assessment
  • 2016
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 11:3
  • Tidskriftsartikel (refereegranskat)abstract
    • As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%-85% of permafrost carbon release can still be avoided if human emissions are actively reduced.
  •  
3.
  • Rixen, C., et al. (författare)
  • Winters are changing: snow effects on Arctic and alpine tundra ecosystems
  • 2022
  • Ingår i: Arctic Science. - : Canadian Science Publishing. - 2368-7460. ; 8:3, s. 572-608
  • Tidskriftsartikel (refereegranskat)abstract
    • Snow is an important driver of ecosystem processes in cold biomes. Snow accumulation determines ground temperature, light conditions, and moisture availability during winter. It also affects the growing season's start and end, and plant access to moisture and nutrients. Here, we review the current knowledge of the snow cover's role for vegetation, plant-animal interactions, permafrost conditions, microbial processes, and biogeochemical cycling. We also compare studies of natural snow gradients with snow experimental manipulation studies to assess time scale difference of these approaches. The number of tundra snow studies has increased considerably in recent years, yet we still lack a comprehensive overview of how altered snow conditions will affect these ecosystems. Specifically, we found a mismatch in the timing of snowmelt when comparing studies of natural snow gradients with snow manipulations. We found that snowmelt timing achieved by snow addition and snow removal manipulations (average 7.9 days advance and 5.5 days delay, respectively) were substantially lower than the temporal variation over natural spatial gradients within a given year (mean range 56 days) or among years (mean range 32 days). Differences between snow study approaches need to be accounted for when projecting snow dynamics and their impact on ecosystems in future climates.
  •  
4.
  • Cornwell, William K., et al. (författare)
  • Plant species traits are the predominant control on litter decomposition rates within biomes worldwide
  • 2008
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 11:10, s. 1065-1071
  • Tidskriftsartikel (refereegranskat)abstract
    • Worldwide decomposition rates depend both on climate and the legacy of plant functional traits as litter quality. To quantify the degree to which functional differentiation among species affects their litter decomposition rates, we brought together leaf trait and litter mass loss data for 818 species from 66 decomposition experiments on six continents. We show that: (i) the magnitude of species-driven differences is much larger than previously thought and greater than climate-driven variation; (ii) the decomposability of a species' litter is consistently correlated with that species' ecological strategy within different ecosystems globally, representing a new connection between whole plant carbon strategy and biogeochemical cycling. This connection between plant strategies and decomposability is crucial for both understanding vegetation-soil feedbacks, and for improving forecasts of the global carbon cycle.
  •  
5.
  • Hollister, R. D., et al. (författare)
  • A review of open top chamber (OTC) performance across the ITEX Network
  • 2023
  • Ingår i: Arctic Science. - : Canadian Science Publishing. - 2368-7460. ; 9:2, s. 331-344
  • Tidskriftsartikel (refereegranskat)abstract
    • Open top chambers (OTCs) were adopted as the recommended warming mechanism by the International Tundra Experiment network in the early 1990s. Since then, OTCs have been deployed across the globe. Hundreds of papers have reported the im-pacts of OTCs on the abiotic environment and the biota. Here, we review the impacts of the OTC on the physical environment, with comments on the appropriateness of using OTCs to characterize the response of biota to warming. The purpose of this review is to guide readers to previously published work and to provide recommendations for continued use of OTCs to under -stand the implications of warming on low stature ecosystems. In short, the OTC is a useful tool to experimentally manipulate temperature; however, the characteristics and magnitude of warming varies greatly in different environments; therefore, it is important to document chamber performance to maximize the interpretation of biotic response. When coupled with long-term monitoring, warming experiments are a valuable means to understand the impacts of climate change on natural ecosystems.
  •  
6.
  • Lembrechts, Jonas J., et al. (författare)
  • SoilTemp : A global database of near-surface temperature
  • 2020
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 26:11, s. 6616-6629
  • Tidskriftsartikel (refereegranskat)abstract
    • Current analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long-term average thermal conditions at coarse spatial resolutions only. Hence, many climate-forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing or cold-air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free-air temperatures, microclimatic ground and near-surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near-surface temperature data from all over the world. Currently, this database contains time series from 7,538 temperature sensors from 51 countries across all key biomes. The database will pave the way toward an improved global understanding of microclimate and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions relevant to most organisms and ecosystem processes.
  •  
7.
  • Aerts, R., et al. (författare)
  • Seasonal climate manipulations have only minor effects on litter decomposition rates and N dynamics but strong effects on litter P dynamics of sub-arctic bog species
  • 2012
  • Ingår i: Oecologia. - : Springer. - 0029-8549 .- 1432-1939. ; 170:3, s. 809-819
  • Tidskriftsartikel (refereegranskat)abstract
    • Litter decomposition and nutrient mineralization in high-latitude peatlands are constrained by low temperatures. So far, little is known about the effects of seasonal components of climate change (higher spring and summer temperatures, more snow which leads to higher winter soil temperatures) on these processes. In a 4-year field experiment, we manipulated these seasonal components in a sub-arctic bog and studied the effects on the decomposition and N and P dynamics of leaf litter of Calamagrostis lapponica, Betula nana, and Rubus chamaemorus, incubated both in a common ambient environment and in the treatment plots. Mass loss in the controls increased in the order Calamagrostis < Betula < Rubus. After 4 years, overall mass loss in the climate-treatment plots was 10 % higher compared to the ambient incubation environment. Litter chemistry showed within each incubation environment only a few and species-specific responses. Compared to the interspecific differences, they resulted in only moderate climate treatment effects on mass loss and these differed among seasons and species. Neither N nor P mineralization in the litter were affected by the incubation environment. Remarkably, for all species, no net N mineralization had occurred in any of the treatments during 4 years. Species differed in P-release patterns, and summer warming strongly stimulated P release for all species. Thus, moderate changes in summer temperatures and/or winter snow addition have limited effects on litter decomposition rates and N dynamics, but summer warming does stimulate litter P release. As a result, N-limitation of plant growth in this sub-arctic bog may be sustained or even further promoted.
  •  
8.
  • Dorrepaal, E, et al. (författare)
  • Are growth forms consistent predictors of leaf litter quality and decomposability across peatlands along a latitudinal gradient?
  • 2005
  • Ingår i: Journal of Ecology. - : Wiley. - 1365-2745 .- 0022-0477. ; 93:4, s. 817-828
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant growth forms are widely used to predict the effects of environmental changes, such as climate warming and increased nitrogen deposition, on plant communities, and the consequences of species shifts for carbon and nutrient cycling. We investigated whether the relationship between growth forms and patterns in litter quality and decomposition are independent of environmental conditions and whether growth forms are as good as litter chemistry at predicting decomposability. We used a natural, latitudinal gradient in NW Europe as a spatial analogue for future increases in temperature and nitrogen availability. Our screening of 70 species typical of Sphagnum-dominated peatlands showed that leaf litters of Sphagnum mosses, evergreen and deciduous shrubs, graminoids and forbs differed significantly in litter chemistry and that the ranking of the growth forms was independent of the region for all litter chemistry variables. Differences among growth forms were usually larger than differences related to the environmental gradient. After 8 and 20 months incubation in outdoor, Sphagnum-based decomposition beds, growth forms generally differed in decomposability, but these patterns varied with latitude. Sphagnum litters decomposed slower than other litters in all regions, again explaining its high representation in organic deposits of peatlands. Forb litters generally decomposed fastest, while the differences among the other growth forms were small, particularly at higher latitudes. Multiple regression analyses showed that growth forms were better at predicting leaf litter decomposition than chemical variables in warm-temperate peatlands with a high N-load, but less so in the subarctic, low-N region. Our results indicate that environmental changes may be less important in determining ecosystem leaf litter chemistry directly than are their indirect effects through changes in the relative abundance of growth forms. However, climatic and nutritional constraints in high-latitude peatlands promote convergence towards nutrient-efficient plant traits, resulting in similar decomposition rates of vascular growth forms despite differences in litter chemistry. The usefulness of the growth-form concept in predicting plant community controls on ecosystem functioning is therefore somewhat limited.
  •  
9.
  • Elmendorf, Sarah C., et al. (författare)
  • Plot-scale evidence of tundra vegetation change and links to recent summer warming
  • 2012
  • Ingår i: Nature Climate Change. - : Nature Publishing Group. - 1758-678X .- 1758-6798. ; 2:6, s. 453-457
  • Tidskriftsartikel (refereegranskat)abstract
    • Temperature is increasing at unprecedented rates across most of the tundra biome. Remote-sensing data indicate that contemporary climate warming has already resulted in increased productivity over much of the Arctic, but plot-based evidence for vegetation transformation is not widespread. We analysed change in tundra vegetation surveyed between 1980 and 2010 in 158 plant communities spread across 46 locations.We found biome-wide trends of increased height of the plant canopy and maximum observed plant height for most vascular growth forms; increased abundance of litter; increased abundance of evergreen, low-growing and tall shrubs; and decreased abundance of bare ground. Intersite comparisons indicated an association between the degree of summer warming and change in vascular plant abundance, with shrubs, forbs and rushes increasing with warming. However, the association was dependent on the climate zone, the moisture regime and the presence of permafrost. Our data provide plot-scale evidence linking changes in vascular plant abundance to local summer warming in widely dispersed tundra locations across the globe.
  •  
10.
  • Gavazov, Konstantin, 1983-, et al. (författare)
  • Plant-microbial linkages underpin carbon sequestration in contrasting mountain tundra vegetation types
  • 2022
  • Ingår i: Soil Biology and Biochemistry. - : Elsevier. - 0038-0717 .- 1879-3428. ; 165
  • Tidskriftsartikel (refereegranskat)abstract
    • Tundra ecosystems hold large stocks of soil organic matter (SOM), likely due to low temperatures limiting rates of microbial SOM decomposition more than those of SOM accumulation from plant primary productivity and microbial necromass inputs. Here we test the hypotheses that distinct tundra vegetation types and their carbon supply to characteristic rhizosphere microbes determine SOM cycling independent of temperature. In the subarctic Scandes, we used a three-way factorial design with paired heath and meadow vegetation at each of two elevations, and with each combination of vegetation type and elevation subjected during one growing season to either ambient light (i.e., ambient plant productivity), or 95% shading (i.e., reduced plant productivity). We assessed potential above- and belowground ecosystem linkages by uni- and multivariate analyses of variance, and structural equation modelling. We observed direct coupling between tundra vegetation type and microbial community composition and function, which underpinned the ecosystem's potential for SOM storage. Greater primary productivity at low elevation and ambient light supported higher microbial biomass and nitrogen immobilisation, with lower microbial mass-specific enzymatic activity and SOM humification. Congruently, larger SOM at lower elevation and in heath sustained fungal-dominated microbial communities, which were less substrate-limited, and invested less into enzymatic SOM mineralisation, owing to a greater carbon-use efficiency (CUE). Our results highlight the importance of tundra plant community characteristics (i.e., productivity and vegetation type), via their effects on soil microbial community size, structure and physiology, as essential drivers of SOM turnover. The here documented concerted patterns in above- and belowground ecosystem functioning is strongly supportive of using plant community characteristics as surrogates for assessing tundra carbon storage potential and its evolution under climate and vegetation changes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20
Typ av publikation
tidskriftsartikel (20)
Typ av innehåll
refereegranskat (19)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Dorrepaal, Ellen (17)
Björk, Robert G., 19 ... (5)
Björkman, Mats P., 1 ... (5)
Tuittila, Eeva-Stiin ... (5)
Aerts, R (4)
Cornelissen, J. H. C ... (4)
visa fler...
Lamentowicz, Mariusz (4)
Cooper, E J (3)
Molau, Ulf, 1951 (3)
Dorrepaal, E. (3)
van Logtestijn, R. S ... (3)
Aerts, Rien (3)
Jónsdóttir, I. S. (3)
Walz, Josefine (3)
Robroek, Bjorn J. M. (3)
Lee, H. (2)
Aalto, Juha (2)
Hylander, Kristoffer (2)
Luoto, Miska (2)
Schuur, Edward A. G. (2)
Natali, Susan M. (2)
Turetsky, Merritt R. (2)
Benscoter, Brian W. (2)
Johnstone, Jill F. (2)
Keuper, Frida (2)
Oberbauer, Steven F. (2)
Welker, Jeffrey M. (2)
Nilsson, Mats (2)
Ardö, Jonas (2)
De Frenne, Pieter (2)
Merinero, Sonia (2)
Larson, Keith (2)
Alatalo, Juha M. (2)
Lenoir, Jonathan (2)
Jung, J. Y. (2)
Boeckx, Pascal (2)
Smith, Stuart W. (2)
Walz, J. (2)
Boike, Julia (2)
Bauters, Marijn (2)
Buchmann, Nina (2)
Van Meerbeek, Koenra ... (2)
Benito Alonso, José ... (2)
Dolezal, Jiri (2)
Henry, G. H. R. (2)
Myers-Smith, Isla H. (2)
Rixen, Christian (2)
Wipf, Sonja (2)
Carbognani, Michele (2)
Cooper, Elisabeth J. (2)
visa färre...
Lärosäte
Umeå universitet (18)
Göteborgs universitet (7)
Sveriges Lantbruksuniversitet (6)
Stockholms universitet (5)
Lunds universitet (3)
Uppsala universitet (2)
Språk
Engelska (20)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (20)
Lantbruksvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy