SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Driessche Ann Van) "

Sökning: WFRF:(Driessche Ann Van)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Anguille, Sébastien, et al. (författare)
  • Dendritic cell vaccination as postremission treatment to prevent or delay relapse in acute myeloid leukemia
  • 2017
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 130:15, s. 1713-1721
  • Tidskriftsartikel (refereegranskat)abstract
    • Relapse is a major problem in acute myeloid leukemia (AML) and adversely affects survival. In this phase 2 study, we investigated the effect of vaccination with dendritic cells (DCs) electroporated with Wilms’ tumor 1 (WT1) messenger RNA (mRNA) as postremission treatment in 30 patients with AML at very high risk of relapse. There was a demonstrable antileukemic response in 13 patients. Nine patients achieved molecular remission as demonstrated by normalization of WT1 transcript levels, 5 of which were sustained after a median follow-up of 109.4 months. Disease stabilization was achieved in 4 other patients. Five-year overall survival (OS) was higher in responders than in nonresponders (53.8% vs 25.0%; P 5 .01). In patients receiving DCs in first complete remission (CR1), there was a vaccine-induced relapse reduction rate of 25%, and 5-year relapse-free survival was higher in responders than in nonresponders (50% vs 7.7%; P < .0001). In patients age £65 and >65 years who received DCs in CR1, 5-year OS was 69.2% and 30.8% respectively, as compared with 51.7% and 18% in the Swedish Acute Leukemia Registry. Long-term clinical response was correlated with increased circulating frequencies of polyepitope WT1-specific CD81 T cells. Long-term OS was correlated with interferon-g1 and tumor necrosis factor-a1 WT1-specific responses in delayed-type hypersensitivity-infiltrating CD81 T lymphocytes. In conclusion, vaccination of patients with AML with WT1 mRNA-electroporated DCs can be an effective strategy to prevent or delay relapse after standard chemotherapy, translating into improved OS rates, which are correlated with the induction of WT1-specific CD81 T-cell response. This trial was registered at www.clinicaltrials.gov as #NCT00965224.
  •  
2.
  • Mansouri, Kamel, et al. (författare)
  • CoMPARA : Collaborative Modeling Project for Androgen Receptor Activity
  • 2020
  • Ingår i: Journal of Environmental Health Perspectives. - 0091-6765 .- 1552-9924. ; 128:2, s. 1-17
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Endocrine disrupting chemicals (EDCs) are xenobiotics that mimic the interaction of natural hormones and alter synthesis, transport, or metabolic pathways. The prospect of EDCs causing adverse health effects in humans and wildlife has led to the development of scientific and regulatory approaches for evaluating bioactivity. This need is being addressed using high-throughput screening (HTS) in vitro approaches and computational modeling.OBJECTIVES: In support of the Endocrine Disruptor Screening Program, the U.S. Environmental Protection Agency (EPA) led two worldwide consortiums to virtually screen chemicals for their potential estrogenic and androgenic activities. Here, we describe the Collaborative Modeling Project for Androgen Receptor Activity (CoMPARA) efforts, which follows the steps of the Collaborative Estrogen Receptor Activity Prediction Project (CERAPP).METHODS: The CoMPARA list of screened chemicals built on CERAPP's list of 32,464 chemicals to include additional chemicals of interest, as well as simulated ToxCast (TM) metabolites, totaling 55,450 chemical structures. Computational toxicology scientists from 25 international groups contributed 91 predictive models for binding, agonist, and antagonist activity predictions. Models were underpinned by a common training set of 1,746 chemicals compiled from a combined data set of 11 ToxCast (TM)/Tox21 HTS in vitro assays.RESULTS: The resulting models were evaluated using curated literature data extracted from different sources. To overcome the limitations of single-model approaches, CoMPARA predictions were combined into consensus models that provided averaged predictive accuracy of approximately 80% for the evaluation set.DISCUSSION: The strengths and limitations of the consensus predictions were discussed with example chemicals; then, the models were implemented into the free and open-source OPERA application to enable screening of new chemicals with a defined applicability domain and accuracy assessment. This implementation was used to screen the entire EPA DSSTox database of similar to 875,000 chemicals, and their predicted AR activities have been made available on the EPA CompTox Chemicals dashboard and National Toxicology Program's Integrated Chemical Environment.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy