SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Drobne Damjana) "

Sökning: WFRF:(Drobne Damjana)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bayat, Narges, et al. (författare)
  • The effects of engineered nanoparticles on the cellular structure and growth of Saccharomyces cerevisiae
  • 2014
  • Ingår i: Nanotoxicology. - : Informa UK Limited. - 1743-5390 .- 1743-5404. ; 8:4, s. 363-373
  • Tidskriftsartikel (refereegranskat)abstract
    • In order to study the effects of nanoparticles (NPs) with different physicochemical properties on cellular viability and structure, Saccharomyces cerevisiae were exposed to different concentrations of TiO2-NPs (1-3 nm), ZnO-NPs (<100 nm), CuO-NPs (<50 nm), their bulk forms, Ag-NPs (10 nm) and single-walled carbon nanotubes (SWCNTs). The GreenScreen assay was used to measure cyto- and genotoxicity, and transmission electron microscopy (TEM) used to assess ultrastructure. Cu-ONPs were highly cytotoxic, reducing the cell density by 80% at 9 cm(2)/ml, and inducing lipid droplet formation. Cells exposed to Ag-NPs (19 cm(2)/ml) and TiO2-NPs (147 cm(2)/ml) contained dark deposits in intracellular vacuoles, the cell wall and vesicles, and reduced cell density (40 and 30%, respectively). ZnO-NPs (8 cm(2)/ml) caused an increase in the size of intracellular vacuoles, despite not being cytotoxic. SWCNTs did not cause cytotoxicity or significant alterations in ultrastructure, despite high oxidative potential. Two genotoxicity assays, GreenScreen and the comet assay, produced different results and the authors discuss the reasons for this discrepancy. Classical assays of toxicity may not be the most suitable for studying the effects of NPs in cellular systems, and the simultaneous assessment of other measures of the state of cells, such as TEM are highly recommended.
  •  
2.
  • Boraschi, Diana, et al. (författare)
  • Addressing Nanomaterial Immunosafety by Evaluating Innate Immunity across Living Species
  • 2020
  • Ingår i: Small. - Weinheim : Wiley - VCH Verlag GmbH. - 1613-6810 .- 1613-6829. ; 16:21
  • Forskningsöversikt (refereegranskat)abstract
    • The interaction of a living organism with external foreign agents is a central issue for its survival and adaptation to the environment. Nanosafety should be considered within this perspective, and it should be examined that how different organisms interact with engineered nanomaterials (NM) by either mounting a defensive response or by physiologically adapting to them. Herein, the interaction of NM with one of the major biological systems deputed to recognition of and response to foreign challenges, i.e., the immune system, is specifically addressed. The main focus is innate immunity, the only type of immunity in plants, invertebrates, and lower vertebrates, and that coexists with adaptive immunity in higher vertebrates. Because of their presence in the majority of eukaryotic living organisms, innate immune responses can be viewed in a comparative context. In the majority of cases, the interaction of NM with living organisms results in innate immune reactions that eliminate the possible danger with mechanisms that do not lead to damage. While in some cases such interaction may lead to pathological consequences, in some other cases beneficial effects can be identified.
  •  
3.
  • Imani, Roghayeh, et al. (författare)
  • Multifunctional Gadolinium-Doped Mesoporous TiO2 Nanobeads : Photoluminescence, Enhanced Spin Relaxation, and Reactive Oxygen Species Photogeneration, Beneficial for Cancer Diagnosis and Treatment
  • 2017
  • Ingår i: Small. - : Wiley. - 1613-6810 .- 1613-6829. ; 13:20
  • Tidskriftsartikel (refereegranskat)abstract
    • Materials with controllable multifunctional abilities for optical imaging (OI) and magnetic resonant imaging (MRI) that also can be used in photodynamic therapy are very interesting for future applications. Mesoporous TiO2 sub-micrometer particles are doped with gadolinium to improve photoluminescence functionality and spin relaxation for MRI, with the added benefit of enhanced generation of reactive oxygen species (ROS). The Gd-doped TiO2 exhibits red emission at 637 nm that is beneficial for OI and significantly improves MRI relaxation times, with a beneficial decrease in spin-lattice and spin-spin relaxation times. Density functional theory calculations show that Gd3+ ions introduce impurity energy levels inside the bandgap of anatase TiO2, and also create dipoles that are beneficial for charge separation and decreased electron-hole recombination in the doped lattice. The Gd-doped TiO2 nanobeads (NBs) show enhanced ability for ROS monitored via center dot OH radical photogeneration, in comparison with undoped TiO2 nanobeads and TiO2 P25, for Gd-doping up to 10%. Cellular internalization and biocompatibility of TiO2@xGd NBs are tested in vitro on MG-63 human osteosarcoma cells, showing full biocompatibility. After photoactivation of the particles, anticancer trace by means of ROS photogeneration is observed just after 3 min irradiation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy