SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dromey B.) "

Sökning: WFRF:(Dromey B.)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jung, D, et al. (författare)
  • On the analysis of inhomogeneous magnetic field spectrometer for laser-driven ion acceleration.
  • 2015
  • Ingår i: Review of Scientific Instruments. - : AIP Publishing. - 1089-7623 .- 0034-6748. ; 86:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a detailed study of the use of a non-parallel, inhomogeneous magnetic field spectrometer for the investigation of laser-accelerated ion beams. Employing a wedged yoke design, we demonstrate the feasibility of an in-situ self-calibration technique of the non-uniform magnetic field and show that high-precision measurements of ion energies are possible in a wide-angle configuration. We also discuss the implications of a stacked detector system for unambiguous identification of different ion species present in the ion beam and explore the feasibility of detection of high energy particles beyond 100 MeV/amu in radiation harsh environments.
  •  
2.
  • Turcu, I. C. E., et al. (författare)
  • HIGH FIELD PHYSICS AND QED EXPERIMENTS AT ELI-NP
  • 2016
  • Ingår i: Romanian Reports on Physics. - 1221-1451 .- 1841-8759. ; 68, s. S145-S231
  • Tidskriftsartikel (refereegranskat)abstract
    • ELI-NP facility will enable for the first time the use of two 10 PW laser beams for quantum electrodynamics (QED) experiments. The first beam will accelerate electrons to relativistic energies. The second beam will subject relativistic electrons to the strong electromagnetic field generating QED processes: intense gamma ray radiation and electron-positron pair formation. The laser beams will be focused to intensities above 10(21) Wcm(-2) and reaching 10(22)-10(23) Wcm(-2) for the first time. We propose to use this capability to investigate new physical phenomena at the interfaces of plasma, nuclear and particle physics at ELI-NP. This High Power Laser System Technical Design Report (HPLS-TDR2) presents the experimental area E6 at ELI-NP for investigating high field physics and quantum electrodynamics and the production of electron-positron-pairs and of energetic gamma-rays. The scientific community submitted 12 commissioning runs for E6 interaction chamber with two 10 PW laser beams and one proposal for the CETAL interaction chamber with 1 PW laser. The proposals are representative of the international high field physics community being written by 48 authors from 14 European and US organizations. The proposals are classified according to the science area investigated into: Radiation Reaction Physics: Classical and Quantum; Compton and Thomson Scattering Physics: Linear and Non Linear Regimes; QED in Vacuum; Atoms in Extreme Fields. Two pump-probe colliding 10 PW laser beams are proposed for the E6 interaction chamber. The focused pump laser beam accelerates the electrons to relativistic energies. The accelerated electron bunches interact with the very high electro-magnetic field of the focused probe laser beam. We propose two main types of experiments with: (a) gas targets in which the pump laser-beam is focused by a long focal length mirror and drives a wakefield in which the electron bunch is accelerated to multi-GeV energies and then exposed to the EM field of the probe laser which is tightly focused; (b) solid targets in which both the pump and probe laser beams are focused on the solid target, one accelerating the electrons in the solid and the other, delayed, providing the high electric field to which the relativistic electrons are subjected. We propose four main focusing configurations for the pump and probe laser beams, two for each type of target: counter-propagating 10 PW focused laser beams and the two 10 PW laser beams focused in the same direction. For solid targets we propose an additional configuration with plasma-mirror on the pump laser beam: the plasma mirror placed between the focusing mirror and target. It is proposed that the 10 PW laser beams will have polarization control and focus control by means of adaptive optics. Initially only one 10 PW may have polarization control and adaptive optics. In order to accommodate the two laser beams and diagnostics the proposed interaction chamber is quasi-octagonal with a diameter of 4.5 m. A large electron-spectrometer is proposed for multi-GeV electrons. Other diagnostics are requested for: gamma-rays, electrons and positrons, protons and ions, plasma characterization, transmitted and reflected laser beam. Targets will be provided by the ELI-NP Target Laboratory or purchased. The E6 experiments and diagnostics will benefit from the ELI-NP Electronics Laboratory, the Workshop and the Optics Laboratory. In order to ensure radiation-protection, a large beam-dump is planned for both multi-GeV electrons and multi-100 MeV protons.
  •  
3.
  • Dromey, B, et al. (författare)
  • Picosecond metrology of laser-driven proton bursts.
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Tracking primary radiation-induced processes in matter requires ultrafast sources and high precision timing. While compact laser-driven ion accelerators are seeding the development of novel high instantaneous flux applications, combining the ultrashort ion and laser pulse durations with their inherent synchronicity to trace the real-time evolution of initial damage events has yet to be realized. Here we report on the absolute measurement of proton bursts as short as 3.5±0.7 ps from laser solid target interactions for this purpose. Our results verify that laser-driven ion acceleration can deliver interaction times over a factor of hundred shorter than those of state-of-the-art accelerators optimized for high instantaneous flux. Furthermore, these observations draw ion interaction physics into the field of ultrafast science, opening the opportunity for quantitative comparison with both numerical modelling and the adjacent fields of ultrafast electron and photon interactions in matter.
  •  
4.
  • Brenner, C. M., et al. (författare)
  • Dependence of laser accelerated protons on laser energy following the interaction of defocused, intense laser pulses with ultra-thin targets
  • 2011
  • Ingår i: Laser and Particle Beams. - 0263-0346. ; 29:3, s. 345-351
  • Tidskriftsartikel (refereegranskat)abstract
    • The scaling of the flux and maximum energy of laser-driven sheath-accelerated protons has been investigated as a function of laser pulse energy in the range of 15-380 mJ at intensities of 10(16)-10(18) W/cm(2). The pulse duration and target thickness were fixed at 40 fs and 25 nm, respectively, while the laser focal spot size and drive energy were varied. Our results indicate that while the maximum proton energy is dependent on the laser energy and laser spot diameter, the proton flux is primarily related to the laser pulse energy under the conditions studied here. Our measurements show that increasing the laser energy by an order of magnitude results in a more than 500-fold increase in the observed proton flux. Whereas, an order of magnitude increase in the laser intensity generated by decreasing the laser focal spot size, at constant laser energy, gives rise to less than a tenfold increase in observed proton flux.
  •  
5.
  • Green, J. S., et al. (författare)
  • Enhanced proton flux in the MeV range by defocused laser irradiation
  • 2010
  • Ingår i: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Thin Al foils (50 nm and 6 mu m) were irradiated at intensities of up to 2x10(19) W cm(-2) using high contrast (10(8)) laser pulses. Ion emission from the rear of the targets was measured using a scintillator-based Thomson parabola and beam sampling 'footprint' monitor. The variation of the ion spectra and beam profile with focal spot size was systematically studied. The results show that while the maximum proton energy is achieved around tight focus for both target thicknesses, as the spot size increases the ion flux at lower energies is seen to peak at significantly increased spot sizes. Measurements of the proton footprint, however, show that the off-axis proton flux is highest at tight focus, indicating that a previously identified proton deflection mechanism may alter the on-axis spectrum. One-dimensional particle-in-cell modelling of the experiment supports our hypothesis that the observed change in spectra with focal spot size is due to the competition of two effects: decrease in laser intensity and an increase in proton emission area.
  •  
6.
  • Pirozhkov, A. S., et al. (författare)
  • Diagnostic of laser contrast using target reflectivity
  • 2009
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 94:24
  • Tidskriftsartikel (refereegranskat)abstract
    • Using three different laser systems, we demonstrate a convenient and simple plasma based diagnostic of the contrast of high-power short-pulse lasers. The technique is based on measuring the specular reflectivity from a solid target. The reflectivity remains high even at relativistic intensities above 10(19) W/cm(2) in the case of a high-contrast prepulse-free laser. On the contrary, the specular reflectivity drops with increasing intensities in the case of systems with insufficient contrast due to beam breakup and increased absorption caused by preplasma.
  •  
7.
  • Robinson, A. P. L., et al. (författare)
  • Spectral modification of laser-accelerated proton beams by self-generated magnetic fields
  • 2009
  • Ingår i: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Target normal measurements of proton energy spectra from ultrathin (50-200 nm) planar foil targets irradiated by 10(19) W cm(-2) 40 fs laser pulses exhibit broad maxima that are not present in the energy spectra from micron thickness targets (6 mu m). The proton flux in the peak is considerably greater than the proton flux observed in the same energy range in thicker targets. Numerical modelling of the experiment indicates that this spectral modification in thin targets is caused by magnetic fields that grow at the rear of the target during the laser-target interaction.
  •  
8.
  • Sarri, Gianluca, et al. (författare)
  • Reply to a comment
  • 2020
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 124
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
9.
  • Sarri, Gianluca, et al. (författare)
  • Table-Top Laser-Based Source of Femtosecond, Collimated, Ultrarelativistic Positron Beams
  • 2013
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 110:25, s. 255002-1-255002-5
  • Tidskriftsartikel (refereegranskat)abstract
    • The generation of ultrarelativistic positron beams with short duration (τe+≃30  fs), small divergence (θe+≃3  mrad), and high density (ne+≃1014–1015  cm-3) from a fully optical setup is reported. The detected positron beam propagates with a high-density electron beam and γ rays of similar spectral shape and peak energy, thus closely resembling the structure of an astrophysical leptonic jet. It is envisaged that this experimental evidence, besides the intrinsic relevance to laser-driven particle acceleration, may open the pathway for the small-scale study of astrophysical leptonic jets in the laboratory.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy